
Model-Based Calibration Toolbox™ 3
Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Model-Based Calibration Toolbox™ Reference
© COPYRIGHT 2005–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
November 2005 Online only New for Version 3.0 (Release 14SP3+)
September 2006 Online only Version 3.1 (Release 2006b)
March 2007 Online only Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 3.4.1 (Release 2008a+)
October 2008 Online only Revised for Version 3.5 (Release 2008b)
March 2009 Online only Revised for Version 3.6 (Release 2009a)

Contents

Function Reference
1

Object Creation . 1-2

Data Manipulation . 1-3
Data Properties . 1-3
Data Methods . 1-4

Projects . 1-5
Project Properties . 1-5
Project Methods . 1-5

Test Plans . 1-6
Testplan Properties . 1-6
Testplan Methods . 1-6

Designs . 1-8
Design Properties . 1-8
Design Methods . 1-9
Generator Properties . 1-9
Generator Methods . 1-10
Candidate Set Properties . 1-10
Candidate Set Methods . 1-10
Design Constraint Properties . 1-10
Design Constraint Methods . 1-10

Models . 1-12
Hierarchical Models . 1-12
Local Models . 1-13
Response Models . 1-15
Model Objects . 1-16
Model Parameters . 1-19
Model Properties . 1-20

v

Commands — Alphabetical List

2

vi Contents

1

Function Reference

Object Creation (p. 1-2) Functions to construct data, model
and project objects; load projects;
and find data file types.

Data Manipulation (p. 1-3) Properties and methods for data
objects

Projects (p. 1-5) Properties and methods for project
objects

Test Plans (p. 1-6) Properties and methods for test plan
objects

Designs (p. 1-8) Properties and methods for design
objects

Models (p. 1-12) Properties and methods for model
objects

1 Function Reference

Object Creation
CreateData Create data object
CreateModel Create new model
CreateProject Create project object
DataFileTypes Data file types
LoadProject Load mbcmodel.project
modelinput Create modelinput object

1-2

Data Manipulation

Data Manipulation

Data Properties (p. 1-3) Examine data objects
Data Methods (p. 1-4) Work with data objects

Data Properties

Filters Structure array holding user-defined
filters

IsBeingEdited Boolean signaling if data or model
is being edited

IsEditable Boolean signaling whether data is
editable

Name Name of object
NumberOfRecords Total number of records in data

object
NumberOfTests Total number of tests being used in

model
Owner Object from which data was received
RecordsPerTest Number of records in each test
SignalNames Names of signals held by data
SignalUnits Names of units in data
TestFilters Structure array holding user-defined

test filters
UserVariables Structure array holding user-defined

variables

1-3

1 Function Reference

Data Methods

AddFilter Add user-defined filter to data set
AddTestFilter Add user-defined test filter to data

set
AddVariable Add user-defined variable to data set
Append Append data to data set
BeginEdit Begin editing session on data object
CommitEdit Update temporary changes in data
DefineNumberOfRecordsPerTest Define exact number of records per

test
DefineTestGroups Define rule-based test groupings
ExportToMBCDataStructure Export data to MBC data structure
ImportFromFile Load data from file
ImportFromMBCDataStructure Load data from MBC data structure
ModifyFilter Modify user-defined filter in data set
ModifyTestFilter Modify user-defined test filter in

data set
ModifyVariable Modify user-defined variable in data

set
RemoveFilter Remove user-defined filter from data

set
RemoveTestFilter Remove user-defined test filter from

data set
RemoveVariable Remove user-defined variable from

data set
RollbackEdit Undo most recent changes to data
Value Double data from data object

1-4

Projects

Projects

Project Properties (p. 1-5) Examine project objects
Project Methods (p. 1-5) Work with project objects

Project Properties

Data Array of data objects in project or
test plan

Filename Full path to project file
Modified Boolean signaling whether project

has been modified
Name Name of object
TestPlans Array of test plan objects in project

Project Methods

CopyData Create data object from copy of
existing object

CreateData Create data object
CreateTestplan Create new test plan
Load Load existing project file
New Create new project file
Remove Remove project, test plan, or model
RemoveData Remove data from project
Save Save project
SaveAs Save project to new file

1-5

1 Function Reference

Test Plans

Testplan Properties (p. 1-6) Examine test plan objects
Testplan Methods (p. 1-6) Work with test plan objects

Testplan Properties

BestDesign Best design in test plan
Data Array of data objects in project or

test plan
DefaultModels Default models for test plan
Designs Designs in test plan
Inputs Inputs for test plan, model, design

or constraint
InputSignalNames Names of signals in data that are

being modeled
InputsPerLevel Number of inputs at each level in

model
Levels Number of levels in hierarchical

model
Name Name of object
Responses Array of available responses for test

plan

Testplan Methods

AddDesign Add design to test plan
AttachData Attach data from project to test plan
BoundaryModel Get boundary model from test plan
CreateDesign Create design object for test plan or

model

1-6

Test Plans

CreateResponse Create new response model for test
plan

DetachData Detach data from test plan
FindDesign Find design by name
InputSetupDialog Open Input Setup dialog box to edit

inputs
Remove Remove project, test plan, or model
RemoveDesign Remove design from test plan
UpdateDesign Update design in test plan

1-7

1 Function Reference

Designs

Design Properties (p. 1-8) Examine design objects
Design Methods (p. 1-9) Work with design objects
Generator Properties (p. 1-9) Examine design generator objects
Generator Methods (p. 1-10) Work with design generator objects
Candidate Set Properties (p. 1-10) Examine design candidate set objects
Candidate Set Methods (p. 1-10) Work with design candidate set

objects
Design Constraint Properties
(p. 1-10)

Examine design constraint objects

Design Constraint Methods (p. 1-10) Work with design constraint objects

Design Properties

Constraints Constraints in design
Generator Design generation options
Inputs Inputs for test plan, model, design

or constraint
Model (for designs) Model for design
Name Name of object
NumberOfInputs Number of model or design object

inputs
NumberOfPoints Number of design points
Points Matrix of design points
PointTypes Fixed and free point status
Style Style of design type
Type (for designs and
generators)

Design type

1-8

Designs

Design Methods

AddConstraint Add design contraint
Augment Add design points
ConstrainedGenerate Generate constrained space-filling

design of specified size
CreateCandidateSet Create candidate set for optimal

designs
CreateConstraint Create design contraint
Discrepancy Discrepancy value
FixPoints Fix design points
Generate Generate new design points
getAlternativeTypes Alternative model or design types
Maximin Maximum of minimum of distance

between design points
Merge Merge designs
Minimax Minimum of maximum distance

between design points
OptimalCriteria Optimal design criteria (V, D, A, G)
RemovePoints Remove all nonfixed design points
Scatter2D Plot design points

Generator Properties

NumberOfInputs Number of model or design object
inputs

Type (for designs and
generators)

Design type

1-9

1 Function Reference

Generator Methods

getAlternativeTypes Alternative model or design types
Properties (for design
generators)

View and edit design generator
properties

Candidate Set Properties

NumberOfInputs Number of model or design object
inputs

Type (for candidate sets) Candidate set type

Candidate Set Methods

getAlternativeTypes Alternative model or design types
Properties (for candidate
sets)

View and edit candidate set
properties

Design Constraint Properties

Inputs Inputs for test plan, model, design
or constraint

Name Name of object
NumberOfInputs Number of model or design object

inputs
Type (for design constraints) Design constraint type

Design Constraint Methods

Evaluate Evaluate model or design constraint
getAlternativeTypes Alternative model or design types

1-10

Designs

MatchInputs Match design constraint inputs
Properties (for design
constraints)

View and edit design constraint
properties

1-11

1 Function Reference

Models

Hierarchical Models (p. 1-12) Working with hierarchical models
Local Models (p. 1-13) Working with local models
Response Models (p. 1-15) Working with response models
Model Objects (p. 1-16) Working with model objects
Model Parameters (p. 1-19) Examine model parameter objects
Model Properties (p. 1-20) Set model properties

Hierarchical Models

Hierarchical Response Properties

InputSignalNames Names of signals in data that are
being modeled

Level Level in test plan of response
LocalResponses Array of local responses for response
Name Name of object
NumberOfTests Total number of tests being used in

model
ResponseSignalName Name of signal or response feature

being modeled

Hierarchical Response Methods

AlternativeModelStatistics Summary statistics for alternative
models

CreateAlternativeModels Create alternative models from
model template

DoubleInputData Data being used as input to model

1-12

Models

DoubleResponseData Data being used as output to model
for fitting

Export Make command-line or Simulink®
export model

OutlierIndices Indices of DoubleInputData marked
as outliers

PEV Predicted error variance of model at
specified inputs

PredictedValue Predicted value of model at specified
inputs

Remove Remove project, test plan, or model
SummaryStatistics Summary statistics for response

Local Models

Local Response Properties

InputSignalNames Names of signals in data that are
being modeled

Level Level in test plan of response
Name Name of object
NumberOfTests Total number of tests being used in

model
ResponseFeatures(Local
Response)

Array of response features for local
response

ResponseSignalName Name of signal or response feature
being modeled

1-13

1 Function Reference

Local Response Methods

AlternativeModelStatistics Summary statistics for alternative
models

CreateAlternativeModels Create alternative models from
model template

CreateResponseFeature Create new response feature for local
model

DiagnosticStatistics Diagnostic statistics for response
DoubleInputData Data being used as input to model
DoubleResponseData Data being used as output to model

for fitting
Export Make command-line or Simulink

export model
MakeHierarchicalResponse Build two-stage model from response

feature models
ModelForTest Model for specified test
OutlierIndices Indices of DoubleInputData marked

as outliers
OutlierIndicesForTest Indices marked as outliers for test
PEV Predicted error variance of model at

specified inputs
PEVForTest Local model predicted error variance

for test
PredictedValue Predicted value of model at specified

inputs
PredictedValueForTest Predicted local model response for

test
Remove Remove project, test plan, or model
RemoveOutliers Remove outliers in input data by

index or rule, and refit models

1-14

Models

RemoveOutliersForTest Remove outliers on test by index or
rule and refit models

RestoreData Restore removed outliers
RestoreDataForTest Restore removed outliers for test
SummaryStatistics Summary statistics for response
SummaryStatisticsForTest Statistics for specified test
UpdateResponseFeatures Refit response feature models

Local Model Properties

LocalModel Properties Edit local model properties
ResponseFeatures(Local Model) Set of response features for local

model

Response Models

Response Properties

AlternativeResponses Array of alternative responses for
this response

InputSignalNames Names of signals in data that are
being modeled

Level Level in test plan of response
Model Object Model object within response object
Name Name of object
NumberOfTests Total number of tests being used in

model
ResponseSignalName Name of signal or response feature

being modeled

1-15

1 Function Reference

Response Methods

AlternativeModelStatistics Summary statistics for alternative
models

ChooseAsBest Choose best model from alternative
responses

CreateAlternativeModels Create alternative models from
model template

DiagnosticStatistics Diagnostic statistics for response
DoubleInputData Data being used as input to model
DoubleResponseData Data being used as output to model

for fitting
Export Make command-line or Simulink

export model
OutlierIndices Indices of DoubleInputData marked

as outliers
PEV Predicted error variance of model at

specified inputs
PredictedValue Predicted value of model at specified

inputs
Remove Remove project, test plan, or model
RemoveOutliers Remove outliers in input data by

index or rule, and refit models
RestoreData Restore removed outliers
SummaryStatistics Summary statistics for response

Model Objects
Response objects contain an mbcmodel.model object with the following
properties and methods.

1-16

Models

Model Properties

FitAlgorithm Fit algorithm for model
InputData Input data for model
Inputs Inputs for test plan, model, design

or constraint
IsBeingEdited Boolean signaling if data or model

is being edited
NumberOfInputs Number of model or design object

inputs
OutputData Output (or response) data for model
Parameters Model parameters
Properties (for models) View and edit model properties
Response Response for model object
Status Model status: fitted, not fitted or

best
Type (for models) Valid model types
Units Model output units

Linear Model Methods

AliasMatrix Alias matrix for linear model
parameters

BoxCoxSSE SSE and confidence interval for
Box-Cox transformations

Correlation Correlation matrix for linear model
parameters

Covariance Covariance matrix for linear model
parameters

MultipleVIF Multiple VIF matrix for linear model
parameters

1-17

1 Function Reference

ParameterStatistics Calculate parameter statistics for
linear model

PartialVIF Partial VIF matrix for linear model
parameters

SingleVIF Single VIF matrix for linear model
parameters

StepwiseRegression Change stepwise selection status for
specified terms

Model Methods

CreateDesign Create design object for test plan or
model

Evaluate Evaluate model or design constraint
Export Make command-line or Simulink

export model
Fit Fit model to new or existing data,

and provide summary statistics
getAlternativeTypes Alternative model or design types
InputSetupDialog Open Input Setup dialog box to edit

inputs
Jacobian Calculate Jacobian matrix for model

at existing or new X points
ModelSetup Open Model Setup dialog box where

you can alter model type
PEV Predicted error variance of model at

specified inputs
PredictedValue Predicted value of model at specified

inputs
StatisticsDialog Open summary statistics dialog box

1-18

Models

SummaryStatistics Summary statistics for response
UpdateResponse Replace model in response

Fit Algorithm Methods
An mbcmodel.fitalgorithm object is contained within the Properties
property of an mbcmodel.model object.

CreateAlgorithm Create algorithm
getAlternativeNames List alternative algorithm names
IsAlternative Test alternative fit algorithm
SetupDialog Open fit algorithm setup dialog box

Model Parameters
These properties of the mbcmodel.modelparameters object are all read-only.
An mbcmodel.modelparameters object is contained within the Parameters
property of an mbcmodel.model object.

Model Parameters Properties

Names Model parameter names
NumberOfParameters Number of included model

parameters
Values Values of model parameters

Linear Model Properties
A mbcmodel.linearmodelparameters object is a mbcmodel.modelparameters
object plus the following properties.

1-19

1 Function Reference

SizeOfParameterSet Number of model parameters
StepwiseSelection Model parameters currently included

and excluded
StepwiseStatus Stepwise status of parameters in

model

RBF Model Properties
Ambcmodel.rbfmodelparameters object is a mbcmodel.linearmodelparameters
object plus the following properties.

Centers Centers of RBF model
Widths Width data from RBF model

Model Properties

Linear Model Properties Methods

GetAllTerms List all model terms
GetIncludedTerms List included model terms
SetTermStatus Set status of model terms

1-20

2

Commands — Alphabetical
List

AddConstraint

Purpose Add design contraint

Syntax D = AddConstraint(D,c)

Description AddConstraint is a method of mbcdoe.design.

D = AddConstraint(D,c) adds constraint c to the design. You must
call AddConstraint to apply the constraint and remove points outside
the constraint.

See Also CreateConstraint

2-2

AddDesign

Purpose Add design to test plan

Syntax D = AddDesign(T,D)
D = AddDesign(T,Level,D)
D = AddDesign(T,Level,D,Parent)

Description AddDesign is a method of mbcmodel.testplan.

D = AddDesign(T,D)

D = AddDesign(T,Level,D)

D = AddDesign(T,Level,D,Parent)

D is the array of designs to be added to the test plan, T.

Level is the test plan level. By default the level is the outer level (i.e.,
Level 1 for One-stage, Level 2 (global) for Two-stage).

Parent is the parent design in the design tree. By default designs
are added to the top level of the design tree. See Designs for more
information on the design tree.

In order to ensure that the design names are unique in the test plan,
the design name will be changed when adding a design to a test plan
if a design of the same name already exists. The array of designs with
modified names is an output.

Examples To add three designs to the test plan global (2) level:

D = AddDesign(TP, [sfDesign, parkedCamsDesign, mainDesign])

See Also UpdateDesign; RemoveDesign; FindDesign

2-3

AddFilter

Purpose Add user-defined filter to data set

Syntax D = AddFilter(D, expr)

Description This is a method of mbcmodel.data.

A filter is a constraint on the data set used to exclude some records.
You define the filter using logical operators or a logical function on the
existing variables.

D is the mbcmodel.data object you want to filter.

expr is an input string holding the expression that defines the filter.

Examples AddFilter(D, 'AFR < AFR_CALC + 10');

The effect of this filter is to keep all records where AFR < AFR_CALC
+10.

AddFilter(D, 'MyFilterFunction(AFR, RPM, TQ, SPK)');

The effect of this filter is to apply the function MyFilterFunction using
the variables AFR, RPM, TQ, SPK.

All filter functions receive an nx1 vector for each variable and must
return an nx1 logical array out. In that array, true (or 1) indicates a
record to keep, and false (or 0) indicates a record to discard.

See Also ModifyFilter, RemoveFilter, Filters, AddTestFilter,
ModifyTestFilter

2-4

AddTestFilter

Purpose Add user-defined test filter to data set

Syntax D = AddTestFilter(D, expr)

Description This is a method of mbcmodel.data.

A test filter is a constraint on the data set used to exclude some entire
tests. You define the test filter using logical operators or functions on
the existing variables.

D is your data object.

expr is the input string holding the definition of the new test filter.

Examples AddTestFilter(d1, 'any(n>1000)');

The effect of this filter is to include all tests in which all records have
speed (n) greater than 1000.

Similar to filters, test filter functions are iteratively evaluated on each
test, receiving an nx1 vector for each variable input in a test, and must
return an 1x1 logical array out. In that array, true (or 1) indicates a
record to keep, and false (or 0) indicates a test to discard.

AddTestFilter(data, 'length(LOGNO) > 6');

The effect of this filter is to include all tests with more than 6 records.

See Also ModifyTestFilter, RemoveTestFilter, TestFilters, AddFilter

2-5

AddVariable

Purpose Add user-defined variable to data set

Syntax D = AddVariable(D, expr, units)

Description This is a method of mbcmodel.data.

You can define new variables in terms of existing variables. Note that
variable names are case sensitive.

D is your data object.

expr is the input string holding the definition of the new variable.

units is an optional input string holding the units of the variable.

Examples AddVariable(D, 'MY_NEW_VARIABLE = TQ*AFR/2');
AddVariable(D, 'funcVar = MyVariableFunction(TQ, AFR, RPM)',
'lb');
AddVariable(D, 'TQ=tq');

The last example could be useful if the signal names in the data do not
match the model input factor names in the test plan template file.

See Also ModifyVariable, RemoveVariable, UserVariables

2-6

AliasMatrix

Purpose Alias matrix for linear model parameters

Syntax A = M.AliasMatrix

Description This is a method of mbcmodel.linearmodel.

A = M.AliasMatrix calculates the alias matrix for the linear model
parameters (where M is a linear model).

Examples A = AliasMatrix(knot_model)

See Also ParameterStatistics

2-7

AlternativeModelStatistics

Purpose Summary statistics for alternative models

Syntax S = AlternativeModelStatistics(R)
S = AlternativeModelStatistics(R, Name)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

This returns an array (S) of summary statistics of all the alternative
model fits, to be used to select the best model. These are the summary
statistics seen in the list view at the bottom of the Model Browser GUI
in any model view.

You must use CreateAlternativeModels before you can compare the
alternative responses using AlternativeModelStatistics. Then use
ChooseAsBest.

R is the model object whose alternative response models you want to
compare. R could be a local (L), response feature (R) or hierarchical
response (HR) model.

S is a structure containing Statistics and Names fields.

• S.Statistics is a matrix of size (number alternative responses x
number of statistics).

• S.Names is a cell array containing the names of all the statistics.

The available statistics vary according to what kind of parent model
(two-stage, local, response feature or response) produced the alternative
models, and include PRESS RMSE, RMSE, and Two-Stage RMSE.

All the available statistics are calculated unless you specify which
you want. You can specify only the statistics you require using the
following form:

S = AlternativeModelStatistics(R, Name)

This returns a double matrix containing only the statistics specified
in Name.

2-8

AlternativeModelStatistics

Note that you use SummaryStatistics to examine the fit of the current
model, and AlternativeModelStatistics to examine the fit of several
alternative child models.

Examples S = AlternativeModelStatistics(R);

See Also CreateAlternativeModels, SummaryStatistics, ChooseAsBest

2-9

AlternativeResponses

Purpose Array of alternative responses for this response

Syntax altR = R.AlternativeResponses

Description This is a property of the response model object, mbcmodel.response (R).

It returns a list of alternative responses used for one-stage or response
feature models.

Examples R = testplan.Responses;
TQ = R(1);
AR = TQ.AlternativeResponses;

See Also LocalResponses, ResponseFeatures(Local Response)

2-10

Append

Purpose Append data to data set

Syntax D = Append(D, otherData)

Description This is a method of mbcmodel.data.

You can use this to add new data to your existing data set, D.

otherData is the input argument holding the extra data to add below
the existing data. This argument can either be an mbcmodel.data object
or a double array. The behavior is different depending on the type.

If otherData is an mbcmodel.data object then Append will look for
common SignalNames between the two sets of data. If no common
SignalNames are found then a error will be thrown. Any common
signals will be Appended to the existing data and other signals will be
filled with NaN.

If otherData is a double array then it must have exactly the same
number of columns as there are SignalNames in the data, and a simple
vertcat (vertical concatenation) is applied between the existing data
and otherData.

Examples Append(D, CreateData('aDataFile.xls'));
Append(D, rand(10,100));

See Also CreateData

2-11

AttachData

Purpose Attach data from project to test plan

Syntax newD = AttachData(T, D, Property1, Value, Property2, Value...)

Description This is a method of mbcmodel.testplan. Use it to attach the data you
want to model to the test plan.

T is the test plan object, D is the data object.

The following table shows the valid properties and their corresponding
possible values. These are the settings shown in the last page of the
Data Wizard (if there is a design) in the Model Browser. For more
information on the meaning of these settings, refer to the Data Wizard
section (under Data) in the Model Browser User’s Guide.

Note If the testplan has responses set up the models are fitted when
you attach data.

Property Value Default

unmatcheddata {’all’, ’none’} 'all'

moredata {’all’, ’closest’} 'all'

moredesign {’none’, ’closest’} 'none'

tolerances [1xNumInputs
double]

ModelRange/20

When you attach data to a test plan the Name property of the test plan
inputs is used to select data channels. If the Name is empty then the
Symbol is used as the Name. If the Name does not exist in the data
set, an error is generated.

When a test plan has data attached, it is only possible to change the
symbols, ranges or nonlinear transforms of the test plan inputs.

You can use AttachData to use data from one project in another project,
as follows:

2-12

AttachData

p1 = mbcmodel.LoadProject(filename);
p2 = mbcmodel.LoadProject(filename2);
p1.Testplan.AttachData(p2.Data);

Examples newD = AttachData(T1, D1, `more data', `all');

tol = [0.075, 100, 1, 2];
unmatch = 'all';
moredata = 'all';
moredes = 'none';
AttachData(testplan, data ,...

'tolerances', tol,...
'unmatcheddata', unmatch,...
'moredata', moredata,...
'moredesign', moredes);

See Also Data, CreateData, DetachData

2-13

Augment

Purpose Add design points

Syntax D = Augment(D,Numpoints)
D = Augment(D,'Prop1',value1,...)

Description Augment is a method of mbcdoe.design. Use it to add points to a design
using a specified design generator. After augmenting a design, the
design Style is set to Custom unless an optimal design is used for
augmentation, as in the Design Editor.

D = Augment(D,Numpoints) augments the design with the number of
points specified by Numpoints using the current generator settings.

D = Augment(D,'Prop1',value1,...) augments the design with the
generator specified by the generator property value pairs.

You can use the Augment method to add points to an existing type
using a different design type.

OptDesign = Augment(OptDesign,...
'Type','V-optimal',...
'MaxIterations',200,...
'NoImprovement', 50,...
'NumberOfPoints',20);

To set all designs points to fixed and then augment an existing design
optimally, use the FixPoints method to fix all the points as follows:

OptDesign = FixPoints(OptDesign);
OptDesign = Augment(OptDesign,...

'Type','V-optimal',...
'MaxIterations',200,...
'NoImprovement', 50,...
'NumberOfPoints',20);

When augmenting with an optimal design generator existing points
which are not fixed may be changed. To add points optimally and keep
only fixed points, use RemovePoints before augmenting, e.g.,

2-14

Augment

OptDesign = RemovePoints(OptDesign,'free');
OptDesign = Augment(OptDesign,...

'Type','V-optimal',...
'MaxIterations',200,...
'NoImprovement', 50,...
'NumberOfPoints',20);

To get a candidate set object for use with an optimal design:

C = CreateCandidateSet(OptDesign,'Type', 'Grid',...
'NumberOfLevels',[21 21 21]);

You see an error if you try to call Augment when the design Style is
User-defined or Experimental data.

Examples To create a candidate set and then optimally augment a design with 10
points:

CandidateSet = augmentedDesign.CreateCandidateSet('Type', 'Grid')
CandidateSet.NumberOfLevels = [21 21 21 21];
augmentedDesign = Augment(augmentedDesign,...

'Type', 'V-optimal',...
'NumberOfPoints', 10,...
'CandidateSet', CandidateSet,...
'MaxIterations', 200,...
'NoImprovement', 50);

See Also Generate; CreateCandidateSet

2-15

BeginEdit

Purpose Begin editing session on data object

Syntax D = BeginEdit(D)

Description This is a method of mbcmodel.data.

You must call this method before you can make any changes to a data
object.

There are no input arguments. You must call BeginEdit before
attempting to modify your data object (D in the example below) in
any way. An error will be thrown if this condition is not satisfied.
Data which cannot be edited (see IsEditable) will throw an error if
BeginEdit is called.

Examples BeginEdit(D);

See Also CommitEdit, RollbackEdit, IsEditable, IsBeingEdited

2-16

BestDesign

Purpose Best design in test plan

Syntax T.BestDesign{Level} = d;

Description BestDesign is a property of mbcdmodel.testplan.

T.BestDesign{Level} = d; sets d as the best design, where Level is
the test plan level. There can be one best design for each level, but
the best global (2) level design is used for matching to data when you
call AttachData.
BestDesign is a cell array with a cell per level. TP.BestDesign{1} is
the best design for the first level and TP.BestDesign{2} is best design
for the second level.

Examples To set the design globalDesign as the best design at the global (2) level:

T.BestDesign{2} = globalDesign

See Also CreateDesign

2-17

BoundaryModel

Purpose Get boundary model from test plan

Syntax DC = BoundaryModel (T)
DC = BoundaryModel (T, Type)

Description BoundaryModel is a method of mbcmodel.testplan.

DC = BoundaryModel (T) returns the best boundary model for the test
plan, T. DC is a mbcdoe.designconstraint object.

DC = BoundaryModel (T, Type) is the best boundary model for the
specified type associated with the test plan.

Type can be any of the following values:

• 'all' : Best boundary model for all inputs (default)

• 'local' : Best local boundary model

• 'global' : Best global boundary model

Examples To load boundary constraints from another project file and add to design:

otherProject = mbcmodel.LoadProject([matlabroot,'\toolbox\...
mbc\mbctraining\Gasoline_project.mat']);
boundaryConstraints = otherProject.Testplans(1).BoundaryModel('global'
Design.Constraints = boundaryConstraints;

2-18

BoxCoxSSE

Purpose SSE and confidence interval for Box-Cox transformations

Syntax [sse, ci, lambda] = BoxCoxSSE(Model, lambda)
[sse, ci, lambda] = BoxCoxSSE(Model)
BoxCoxSSE(Model, ...)

Description This is a method of mbcmodel.linearmodel.

[sse, ci, lambda] = BoxCoxSSE(Model, lambda) computes the sum
of squares error (sse) and confidence interval (ci) for values of the
model under different Box-Cox transforms (as given by the parameter
lambda). The data used is that which was used to fit the model. sse is a
vector the same size as lambda and ci is a scalar. There is no statistical
difference between the Box-Cox transforms where sse less than ci.

[sse, ci, lambda] = BoxCoxSSE(Model) If lambda is not specified,
then default values for are used and these are returned in third output
argument.

BoxCoxSSE(Model, ...) If no output arguments are requested then a
plot of SSE versus lambda is displayed. The confidence intervals are
also displayed on this plot.

Examples To try several different values, of the Box-Cox parameter and plot the
results:

lambda = -3:0.5:3;
[sse, ci] = BoxCoxSSE(M, lambda);
semilogy(lambda, sse, 'bo-', lambda([1,end]), [ci, ci], 'r--');
xlabel('Box-Cox parameter, \lambda');
ylabel('SSE');

Note that BoxCoxSSE does not set a Box-Cox transform in the model.
To do this use:

M.Properties.BoxCox = 0;
[S,M] = M.Fit;

See Also ParameterStatistics

2-19

Centers

Purpose Centers of RBF model

Syntax centers = params.Centers

Description This is a property of mbcmodel.rbfmodelparameters, for Radial
Basis Function (RBF) models only. This returns an array of size
number_of_centers by number_of_variables.

Examples centers = params.Centers;

See Also Widths

2-20

ChooseAsBest

Purpose Choose best model from alternative responses

Syntax ChooseAsBest(R, Index)

Description This is a method of the response model object, mbcmodel.response.
This is the same function as selecting the best model in the Model
Selection window of the Model Browser GUI. For a local model
MakeHierarchicalResponse performs a similar function.

R is the object containing the response model.

Index is the number of the response model you want to choose as best.
Use AlternativeResponses to find the index for each response model,
and use AlternativeModelStatistics to choose the best fit.

Examples ChooseAsBest(R, AlternativeModel)
RMSE = AlternativeModelStatistics(R, 'RMSE');
[mr, Best] = min(RMSE);
ChooseAsBest(R, Best);

See Also AlternativeResponses, AlternativeModelStatistics,
DiagnosticStatistics, MakeHierarchicalResponse

2-21

CommitEdit

Purpose Update temporary changes in data

Syntax D = CommitEdit(D)

Description This is a method of mbcmodel.data.

Use this to apply changes you have made to the data, such as creating
new variables and applying filters to remove unwanted records.

There are no input arguments. Once you have finished editing your
data object D you must commit your changes back to the project. Data
can only be committed if both IsEditable and IsBeingEdited are true.
CommitEdit will throw an error if these conditions are not met.

Examples D = P.Data;
BeginEdit(D);
AddVariable(D, 'TQ = tq', 'lbft');
AddFilter(D, 'TQ < 200');
DefineTestGroups(D, {'RPM' 'AFR'}, [50 10], 'MyLogNo');
CommitEdit(D);

For an example situation which results in CommitEdit failing:

D = p.Data;
D1 = p.Data;
BeginEdit(D1);
tp = p.'Testplan;
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are
mbcmodel.data objects.

At this point IsEditable(D1) becomes false because it is now Attached
to the test plan and hence can only be modified from the test plan. If
you now enter:

OK = D1.IsEditable

the answer is false.

2-22

CommitEdit

If you now enter:

CommitEdit(D1);

An error is thrown because the data is no longer editable. The error
message informs you that the data may have been attached to a test
plan and can only be edited from there.

See Also BeginEdit, RollbackEdit, IsEditable, IsBeingEdited

2-23

ConstrainedGenerate

Purpose Generate constrained space-filling design of specified size

Syntax design = ConstrainedGenerate(design, NumPoints,
'UnconstrainedSize', Size, 'MaxIter', NumIterations)

design = ConstrainedGenerate(design, NumPoints, OPTIONS)

Description ConstrainedGenerate is a method of mbcdoe.design. Use it to
generate a space-filling design of specified size within the constrained
region. This method only works for space-filling designs. It may not
be possible to achieve a specified number of points, depending on the
generator settings and constraints.

design = ConstrainedGenerate(design, NumPoints,
'UnconstrainedSize', Size, 'MaxIter', NumIterations) tries to
generate a design with the number of constrained points specified by
NumPoints. You can supply parameter value pairs for the options or
you can use a structure:design = ConstrainedGenerate(design,
NumPoints, OPTIONS).

• MaxIter — Maximum iterations. Default: 10

• UnconstrainedSize — Total number of points in unconstrained
design. Default: NumPoints

The algorithm ConstrainedGenerate produces a sequence of calls to
Generate, and updates the UnconstrainedSize using the following
formula:

UnconstrainedSize = ceil(UnconstrainedSize * NumPoints/D.NumberOfPoints

Examples With ConstrainedGenerate, make a 200 point design, using an existing
space-filling design sfDesign, and inspect the constrained and total
number of points:

sfDesign = ConstrainedGenerate(sfDesign, 200, 'UnconstrainedSize', 800

% How did we do?
finalNumberOfPoints = sfDesign.NumberOfPoints

2-24

ConstrainedGenerate

% How many points did we need in total?
totalNumberOfPoints = sfDesign.Generator.NumberOfPoints

finalNumberOfPoints =
200

totalNumberOfPoints =
839

See Also CreateConstraint; Generate

2-25

Constraints

Purpose Constraints in design

Syntax Constraints = D.Constraints

Description Constraints is a property of mbcdoe.design.

Constraints = D.Constraints Designs have a Constraints property,
initially this is empty:

constraints = design.Constraints

constraints =
0x0 array of mbcdoe.designconstraint

Use CreateConstraint to form constraints.

See Also CreateConstraint; AddConstraint

2-26

CopyData

Purpose Create data object from copy of existing object

Syntax newD = CopyData(P, D)
newD = CopyData(P, Index)

Description This is a method of mbcmodel.project.

Use this to duplicate data, for example if you want to make changes for
further modeling but want to retain the existing data set. You can refer
to the data object either by name or index.

P is the project object.

D is the data object you want to copy.

Index is the index of the data object you want to copy.

Examples D2 = CopyData(P1, D1);

See Also Data, CreateData, RemoveData

2-27

Correlation

Purpose Correlation matrix for linear model parameters

Syntax STATS = Correlation(LINEARMODEL)

Description This is a method of mbcmodel.linearmodel.

STATS = Correlation(LINEARMODEL) calculates the correlation matrix
for the linear model parameters.

Examples Stats = Correlation(knot_model)

See Also ParameterStatistics

2-28

Covariance

Purpose Covariance matrix for linear model parameters

Syntax STATS = Covariance(LINEARMODEL)

Description This is a method of mbcmodel.linearmodel.

STATS = Covariance(LINEARMODEL) calculates the covariance matrix
for the linear model parameters.

Examples Stats = Covariance(knot_model)

See Also ParameterStatistics

2-29

CreateAlgorithm

Purpose Create algorithm

Syntax newalg = alg.CreateAlgorithm(AlgorithmName)

Description This is a method of mbcmodel.fitalgorithm.

newalg = alg.CreateAlgorithm(AlgorithmName) creates an
algorithm of the specified type. alg is a mbcmodel.fitalgorithm object.
AlgorithmName must be in the list of alternative algorithms given by
alg.getAlternativeNames.

To change the fit algorithm for a model:

>> mdl = mbcmodel.CreateModel('Polynomial', 2);
>> minpress = mdl.FitAlgorithm.CreateAlgorithm('Minimize PRESS');
>> mdl.FitAlgorithm = minpress;

The AlgorithmName determines what properties you can set. You can
display the properties for an algorithm as follows:

>> mdl.FitAlgorithm.properties

Algorithm: Minimize PRESS
Alternatives: 'Least Squares','Forward Selection','Backward
Selection','Prune'

MaxIter: Maximum Iterations (int: [1,1000])

The following sections list the properties available for each algorithm
type.

Linear
Model
Algorithm
Properties

Linear Models Algorithms

Used by polynomials, hybrid splines and as the StepAlgorithm for RBF
algorithms.

Algorithm: Least Squares

Alternatives: 'Minimize PRESS','Forward Selection','Backward
Selection','Prune'

2-30

CreateAlgorithm

Algorithm: Minimize PRESS

Alternatives: 'Least Squares','Forward Selection','Backward
Selection','Prune'

• MaxIter: Maximum Iterations (int: [1,1000])

Algorithm: Forward Selection

Alternatives: 'Least Squares','Minimize PRESS','Backward
Selection','Prune'

• ConfidenceLevel: Confidence level (%) (numeric: [70,100])

• MaxIter: Maximum Iterations (int: [1,1000])

• RemoveAll: Remove all terms first (Boolean)

Algorithm: Backward Selection

Alternatives: 'Least Squares','Minimize PRESS','Forward
Selection','Prune'

• ConfidenceLevel: Alpha (%) (numeric: [70,100])

• MaxIter: Maximum Iterations (int: [1,1000])

• IncludeAll: Include all terms first (Boolean)

Algorithm: Prune

Alternatives: 'Least Squares','Minimize PRESS','Forward
Selection','Backward Selection'

• Criteria (PRESS RMSE|RMSE|GCV|Weighted
PRESS|-2logL|AIC|AICc|BIC|R^2|R^2 adj|PRESS
R^2|DW|Cp|cond(J))

• MinTerms: Minimum number of terms (int: [0,Inf])

• Tolerance (numeric: [0,1000])

2-31

CreateAlgorithm

• IncludeAll: Include all terms before prune (Boolean)

• Display (Boolean)

RBF Algorithm Properties

For information about any of the RBF and Hybrid RBF algorithm
properties, see “Radial Basis Functions”, and especially “Fitting
Routines” in the Model Browser User’s Guide.

Algorithm: RBF Fit

• WidthAlgorithm: Width selection algorithm (mbcmodel.fitalgorithm)

• StepAlgorithm: Stepwise (mbcmodel.fitalgorithm)

Width Selection Algorithms
Alternatives: 'WidPerDim','Tree Regression'

Algorithm: TrialWidths

• NestedFitAlgorithm: Lambda selection algorithm
(mbcmodel.fitalgorithm)

• Trials: Number of trial widths in each zoom (int: [2,100])

• Zooms: Number of zooms (int: [1,100])

• MinWidth: Initial lower bound on width (numeric:
[2.22045e-016,1000])

• MaxWidth: Initial upper bound on width (numeric:
[2.22045e-016,100])

• PlotFlag: Display plots (Boolean)

• PlotProgress: Display fit progress (Boolean)

Algorithm: WidPerDim

Alternatives: 'TrialWidths','Tree Regression'

2-32

CreateAlgorithm

• NestedFitAlgorithm: Lambda selection algorithm
(mbcmodel.fitalgorithm)

• DisplayFlag: Display (Boolean)

• MaxFunEvals: Maximum number of test widths (int: [1,1e+006])

• PlotProgress: Display fit progress (Boolean)

Algorithm: Tree Regression

Alternatives: 'TrialWidths','WidPerDim'

• MaxNumRectangles: Maximum number of panels (int: [1,Inf])

• MinPerRectangle: Minimum data points per panel (int: [2,Inf])

• RectangleSize: Shrink panel to data (Boolean)

• AlphaSelectAlg: Alpha selection algorithm (mbcmodel.fitalgorithm)

Lambda Selection Algorithms
Algorithm: IterateRidge

Alternatives: 'IterateRols','StepItRols'

• CenterSelectionAlg: Center selection algorithm
(mbcmodel.fitalgorithm)

• MaxNumIter: Maximum number of updates (int: [1,100])

• Tolerance: Minimum change in log10(GCV) (numeric:
[2.22045e-016,1])

• NumberOfLambdaValues: Number of initial test values for lambda
(int: [0,100])

• CheapMode: Do not reselect centers for new width (Boolean)

• PlotFlag: Display (Boolean)

Algorithm: IterateRols

Alternatives: 'IterateRidge','StepItRols'

2-33

CreateAlgorithm

• CenterSelectionAlg: Center selection algorithm
(mbcmodel.fitalgorithm)

• MaxNumIter: Maximum number of iterations (int: [1,100])

• Tolerance: Minimum change in log10(GCV) (numeric:
[2.22045e-016,1])

• NumberOfLambdaValues: Number of initial test values for lambda
(int: [0,100])

• CheapMode: Do not reselect centers for new width (Boolean)

• PlotFlag: Display (Boolean)

Algorithm: StepItRols

Alternatives: 'IterateRidge','IterateRols'

• MaxCenters: Maximum number of centers (evalstr)

• PercentCandidates: Percentage of data to be candidate centers
(evalstr)

• StartLambdaUpdate: Number of centers to add before updating (int:
[1,Inf])

• Tolerance: Minimum change in log10(GCV) (numeric:
[2.22045e-016,1])

• MaxRep: Maximum number of times log10(GCV) change is minimal
(int: [1,100])

Center Selection Algorithms
Algorithm: Rols

Alternatives: 'RedErr','WiggleCenters','CenterExchange'

• MaxCenters: Maximum number of centers (evalstr)

• PercentCandidates: Percentage of data to be candidate centers
(evalstr)

2-34

CreateAlgorithm

• Tolerance: Regularized error tolerance (numeric: [2.22045e-016,1])

Algorithm: RedErr

Alternatives: 'Rols','WiggleCenters','CenterExchange'

• MaxCenters: Number of centers (evalstr)

Algorithm: WiggleCenters

Alternatives: 'Rols','RedErr','CenterExchange'

• MaxCenters: Number of centers (evalstr)

• PercentCandidates: Percentage of data to be candidate centers
(evalstr)

Algorithm: CenterExchange

Alternatives: 'Rols','RedErr','WiggleCenters'

• MaxCenters: Number of centers (evalstr)

• NumLoops: Number of augment/reduce cycles (int: [1,Inf])

• NumAugment: Number of centers to augment by (int: [1,Inf])

Tree Regression Algorithms
Algorithm: Trial Alpha

Alternatives: 'Specify Alpha'

• AlphaLowerBound: Initial lower bound on alpha (numeric:
[2.22045e-016,Inf])

• AlphaUpperBound: Initial upper bound on alpha (numeric:
[2.22045e-016,Inf])

• Zooms: Number of zooms (int: [1,Inf])

• Trials: Trial alphas per zoom (int: [2,Inf])

2-35

CreateAlgorithm

• Spacing: Spacing (Linear|Logarimthic)

• CenterSelectAlg: Center selection algorithm (mbcmodel.fitalgorithm)

Algorithm: Specify Alpha

Alternatives: 'Trial Alpha'

• Alpha: Width scale parameter, alpha (numeric: [2.22045e-016,Inf])

• NestedFitAlgorithm: Center selection algorithm
(mbcmodel.fitalgorithm)

Algorithm: Tree-based Center Selection

Alternatives: 'Generic Center Selection'

• ModelSelectionCriteria: Model selection criteria (BIC|GCV)

• MaxNumberCenters: Maximum number of centers (evalstr)

Algorithm: Generic Center Selection

Alternatives: 'Tree-based Center Selection'

• CenterSelectAlg: Center selection algorithm (mbcmodel.fitalgorithm)

Hybrid RBF Algorithms

Algorithm: RBF Fit

• WidthAlgorithm: Width selection algorithm (mbcmodel.fitalgorithm)

• StepAlgorithm: Stepwise (mbcmodel.fitalgorithm)

Width Selection Algorithms
Algorithm: TrialWidths

• NestedFitAlgorithm: Lambda and term selection algorithm
(mbcmodel.fitalgorithm)

• Trials: Number of trial widths in each zoom (int: [2,100])

2-36

CreateAlgorithm

• Zooms: Number of zooms (int: [1,100])

• MinWidth: Initial lower bound on width (numeric:
[2.22045e-016,1000])

• MaxWidth: Initial upper bound on width (numeric:
[2.22045e-016,100])

• PlotFlag: Display plots (Boolean)

• PlotProgress: Display fit progress (Boolean)

Nested Fit Algorithms
Algorithm: Twostep

Alternatives: 'Interlace'

• MaxCenters: Maximum number of centers (evalstr)

• PercentCandidates: Percentage of data to be candidate centers
(evalstr)

• StartLambdaUpdate: Number of terms to add before updating (int:
[1,Inf])

• Tolerance: Minimum change in log10(GCV) (numeric:
[2.22045e-016,1])

• MaxRep: Maximum number of times log10(GCV) change is minimal
(int: [1,100])

• PlotFlag: Display (Boolean)

Algorithm: Interlace

Alternatives: 'Twostep'

• MaxParameters: Maximum number of terms (evalstr)

• MaxCenters: Maximum number of centers (evalstr)

• PercentCandidates: Percentage of data to be candidate centers
(evalstr)

2-37

CreateAlgorithm

• StartLambdaUpdate: Number of terms to add before updating (int:
[1,Inf])

• Tolerance: Minimum change in log10(GCV) (numeric:
[2.22045e-016,1])

• MaxRep: Maximum number of times log10(GCV) change is minimal
(int: [1,100])

Examples First get a fitalgorithm object, F, from a model:

M = mbcmodel.CreateModel('Polynomial', 4);
F = M.FitAlgorithm

F =
Algorithm: Least Squares
Alternatives: 'Minimize PRESS','Forward Selection','Backward
Selection','Prune'
1x1 struct array with no fields.

Then, to create a new algorithm type:

Alg = CreateAlgorithm(F, 'Minimize PRESS')

Alg =
Algorithm: Minimize PRESS
Alternatives: 'Least Squares','Forward Selection','Backward
Selection','Prune'

MaxIter: 50

See Also getAlternativeNames, SetupDialog

2-38

CreateAlternativeModels

Purpose Create alternative models from model template

Syntax R = CreateAlternativeModels(R, modeltemplate, criteria)
R = CreateAlternativeModels(R, modellist, criteria
R = CreateAlternativeModels(R,
LocalModels,LocalCriteria,GlobalModels,GlobalCriteria)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

This is the same as the Build Models function in the Model Browser
GUI. A selection of child node models are built. The results depend on
where you call this method from. Note that the hierarchical model is
automatically constructed when CreateAlternativeModels is called
for a local model.

• This option makes alternative response feature models for each
response feature.

R = CreateAlternativeModels(R, models, criteria)

- Models is the list of models. You can use a model template
file (.mbm) created in the Model Browser, or a cell array of
mbcmodel.model objects.

- Criteria is the selection criteria for best model (from the statistics
available from AlternativeModelStatistics).

• This option makes alternative local models as well as alternative
response feature models.

R = CreateAlternativeModels(R,
LocalModels,LocalCriteria,GlobalModels,GlobalCriteria)

- LocalModels is the list of local models - you must pass in an
empty matrix).

- LocalCriteria is 'Two-Stage RMSE'.

2-39

CreateAlternativeModels

- GlobalModels is the list of global models (from the model
template).

- GlobalCriteria is the selection criteria for best model.

You construct a model template file (such as 'mymodels.mbm') in the
Model Browser. From any response (global or one-stage model) with
alternative responses (child nodes), select Model > Make Template.
You can save the child node model types of your currently selected
modeling node as a model template. Alternatively from any response
click Build Models in the toolbar and create a series of alternative
response models in the dialog.

Examples mymodels = 'mymodels.mbm';
mlist = {};
load('-mat', mymodels);
critera = 'PRESS RMSE';
CreateAlternativeModels(R, [], 'Two-Stage RMSE', mlist,
criteria);

Note that the model template contains the variable mlist.

CreateAlternativeModels(RESPONSE, 'alternative_models.mbm', 'Weighted PRESS')

creates alternative response feature models based upon the model
template file alternative_models.mbt, and chooses the best model
based upon each model’s Weighted PRESS statistic.

See Also AlternativeModelStatistics

2-40

CreateCandidateSet

Purpose Create candidate set for optimal designs

Syntax D = CreateCandidateSet(D)
D = CreateCandidateSet(D,prop1,value1,...)

Description CreateCandidateSet is a method of mbcdoe.design. Candidate sets
are very similar to design generators. They are not used directly
in specifying a design but are used to specify the set of all possible
points to be considered as part of an optimal design. You obtain
the candidate set from an optimal design generator or by using
mbcdoe.design.CreateCandidateSet.

D = CreateCandidateSet(D) creates a candidate set
(mbcdoe.candidateset object) for the design.

D = CreateCandidateSet(D,prop1,value1,...) creates a candidate
set with the specified properties for the design. To see the properties
you can set, see the table of candidate set properties, Candidate Set
Properties (for Optimal Designs) on page 2-158.

Examples CandidateSet = augmentedDesign.CreateCandidateSet('Type',...
'Grid');

CandidateSet.NumberOfLevels = [21 21 21 21];

See Also Properties (for candidate sets); Augment

2-41

CreateConstraint

Purpose Create design contraint

Syntax c = CreateConstraint(D)
c = CreateConstraint(D,prop1,val1,...)

Description CreateConstraint is a method of mbcdoe.design.

Designs have a Constraints property, initially this is empty:

constraints = design.Constraints

constraints =
0x0 array of mbcdoe.designconstraint

Use CreateConstraint to form constraints.

c = CreateConstraint(D) creates a default constraint for the design.

c = CreateConstraint(D,prop1,val1,...) creates a constraint with
the specified properties. See Constraint Properties on page 2-161.

By default a 1D table constraint is created for designs with two or more
inputs.

For a design with one input a linear constraint is created by default.

You can specify the constraint type during creation by using the Type
property, e.g.,

c = D.CreateConstraint('Type','Linear')

Other available properties depend on the design type. See the table
Constraint Properties on page 2-161.

This method does not add the constraint to the design. You must
explicitly add the constraint to the design using the Constraints
property of the design e.g.,

D= AddConstraint(D,c)

or

2-42

CreateConstraint

D.Constraints(end+1) = c;

You must call AddConstraint to apply the constraint and remove
design points outside the constraint.

Examples To create a Linear constraint, add it to a design, and regenerate the
design points:

cLinear = design.CreateConstraint('Type', 'Linear');
cLinear.A = [-2.5e-4, 1];
cLinear.b = 0.25;
cLinear
design.Constraints = cLinear;
design = Generate(design);

To create and apply a 1D Table constraint:

cTable1d = design.CreateConstraint('Type', '1D Table');
cTable1d.Table = [0.9 0.5];
cTable1d.Breakpoints = [500 6000];
cTable1d
design.Constraints = cTable1d;
design = Generate(design);

To combine constraints, use an array of the constraints you want to
apply:

design.Constraints = [cLinear, cTable1d];
constraints = design.Constraints
design = Generate(design);

constraints =
1x2 array of mbcdoe.designconstraint
Linear design constraint: -0.00025*N + 1*L <= 0.25
1D Table design constraint: L(N) <= Lmax

To load boundary constraints from another project file and add to design:

2-43

CreateConstraint

otherProject = mbcmodel.LoadProject([matlabroot,'\toolbox\...
mbc\mbctraining\Gasoline_project.mat']);
boundaryConstraints = otherProject.Testplans(1).BoundaryModel...
('global');
Design.Constraints = boundaryConstraints;

See Also Properties (for design constraints); AddConstraint

2-44

CreateData

Purpose Create data object

Syntax D = CreateData(P, filename, filetype)
D = mbcmodel.CreateData(filename, filetype)

Description The first syntax is a method of mbcmodel.project. Use this to create a
new data object in an existing project. P is the project object.

filename and filetype are optional arguments that are used to load
data from a file into the new data object at creation time.

filename is a string specifying the full path to the file.

filetype is a string specifying the file type. See DataFileTypes for the
specification of allowed file types (and mbccheckindataloadingfcn to
specify your own data loading function). If filetype is not provided,
then MBC will attempt to infer the file type from the file extension, i.e.
if the file extension is .xls then MBC will try the Excel File Loader.

If filename is not provided then no data will be loaded into the new
data object. Data can be loaded subsequently using ImportFromFile,
provided that editing of the data object has been enabled via a call to
BeginEdit. Call CommitEdit to apply edits.

If you create the data object specifying a filename, then the Name
property is set to the filename. However, if you use ImportFromFile
after creation to load data from a file, the name of the data object does
not change.

The second syntax is a function. Use this to create a new data object
independent of any project. You can use AttachData to use the data
object in another test plan, e.g.,

d = mbcmodel.CreateData(filename);
testplan.AttachData(d);

Examples data = CreateData(P, 'D:\MBCWork\data1.xls');
D = mbcmodel.CreateData;
D = mbcmodel.CreateData('D:\MBCWork\data.xls');

2-45

CreateData

Where P is an mbcmodel.project object.

See Also DataFileTypes, BeginEdit, CopyData, RemoveData, Data,
ImportFromFile, CommitEdit, AttachData

2-46

CreateDesign

Purpose Create design object for test plan or model

Syntax D = CreateDesign(Testplan)
D = CreateDesign(Testplan,Level)
D = CreateDesign(Testplan,Level,prop1,value1,...)
D = CreateDesign(Model)
D = CreateDesign(Model,prop1,value1,...)
D = CreateDesign(Inputs)
D = CreateDesign(Inputs,prop1,value1,...)
D = CreateDesign(Design)

Description CreateDesign is a method of mbcmodel.testplan, mbcmodel.model,
and mbcmodel.modelinput. Property value pairs can be specified
at creation time. The property value pairs are properties of
mbcdoe.design.

Properties of mbcdoe.design

mbcdoe.design Property Description

Constraints Constraints in design.
Generator Design generation options.
Inputs Inputs for design.
Model Model for design.
Points Matrix of design points.
PointTypes Fixed and free point status.
Style Style of design type.
NumberOfInputs Read-only — Number of model

inputs.

2-47

CreateDesign

Properties of mbcdoe.design (Continued)

mbcdoe.design Property Description

NumberOfPoints Read-only — Number of design
points.

Type Design type. The design property
Type can only be specified
with CreateDesign and is
subsequently read-only for design
objects.

D = CreateDesign(Testplan) creates a design for the test plan, where
Testplan is an mbcmodel.testplan object.

D = CreateDesign(Testplan,Level) creates a design for the specified
level of the test plan. By default the level is the outer level (i.e., Level 1
for one-stage, Level 2 (global) for two-stage).

If you do not specify any properties, the method creates a default design
type. The default design types are a Sobol Sequence for two or more
inputs, and a Full Factorial for a single input.

D = CreateDesign(Testplan,Level,prop1,value1,...) creates a
design with the specified properties.

D = CreateDesign(Model) creates a design based on the inputs of
the mbcmodel.model object, Model.

D = CreateDesign(Model,prop1,value1,...) creates a design with
the specified properties based on the inputs of the model.

D = CreateDesign(Inputs) creates a design based on the inputs of the
mbcmodel.modelinput object, Inputs.

D = CreateDesign(Inputs,prop1,value1,...) creates a design with
the specified properties based on the inputs.

D = CreateDesign(Design) creates a copy of an existing design.

2-48

CreateDesign

Examples To create a space-filling design for a test plan TP:

sfDesign = CreateDesign(TP, ...
'Type', 'Latin Hypercube Sampling',...
'Name', 'Space Filling');

Create an optimal design based on the inputs of a model:

optimalDesign = CreateDesign(model,...
'Type', 'V-optimal',...
'Name', 'Optimal Design');

Create a classical full factorial design based on the inputs defined by
a mbcmodel.modelinput object:

design = CreateDesign(inputs, 'Type', 'Full Factorial');

Create a new design based on an existing design (ActualDesign) in
order to augment it:

augmentedDesign = ActualDesign.CreateDesign('Name',...
'Augmented Design');

Create a local level design for the two-stage test plan TP:

localDesign = TP.CreateDesign(1,'Type',...
'Latin Hypercube Sampling');

Create a global level design for the two-stage test plan TP:

globalDesign = TP.CreateDesign(2, 'Type',...
'Latin Hypercube Sampling');

See Also Generate; modelinput

2-49

CreateModel

Purpose Create new model

Syntax M = mbcmodel.CreateModel(Type, INPUTS)
NewModel = CreateModel(model,Type)

Description M = mbcmodel.CreateModel(Type, INPUTS) This syntax is a function
that creates an mbcmodel.model object of the specified Type.

mbcmodel.linearmodel and mbcmodel.localmodel are subclasses of
mbcmodel.model. Model types that begin with the word “local” specify
an mbcmodel.localmodel object.

NewModel = CreateModel(model,Type) This syntax is a function that
creates a new model (of the specified Type) with the same inputs as
an existing model. model is an mbcmodel.model object. You can use
getAlternativeTypes to generate a list of valid model types. See Type
(for models) for a list of valid model types. Spaces and case in Type
are ignored.

INPUTS can be a mbcmodel.modelinput object, or any valid input to the
mbcmodel.modelinput constructor. See modelinput.

Examples To create a hybrid spline with four input factors, enter:

M = mbcmodel.CreateModel('Hybrid Spline', 4)

To create an RBF with four input factors, enter:

Inputs = mbcmodel.modelinput('Symbol',{'N','L','EXH','INT'}',...
'Name',{'ENGSPEED','LOAD','EXHCAM','INTCAM'}',...
'Range',{[800 5000],[0.1 1],[-5 50],[-5 50]}');

RBFModel = mbcmodel.CreateModel('RBF', Inputs);

To create a polynomial with the same input factors as the previously
created RBF, enter:

PolyModel = CreateModel(RBFModel,'Polynomial')

2-50

CreateModel

See Also getAlternativeTypes, modelinput, CreateProject, CreateData, Type
(for models)

2-51

CreateProject

Purpose Create project object

Syntax P = mbcmodel.CreateProject

Description This is a function that creates an mbcmodel.project object.

P is the project object.

P = mbcmodel.CreateProject creates an mbcmodel.project
called Untitled. P = mbcmodel.CreateProject(NAME) creates an
mbcmodel.project called NAME.

Examples P = mbcmodel.CreateProject;

Create a project called MBT_Project:

P = mbcmodel.CreateProject('MBT_Project');

2-52

CreateResponse

Purpose Create new response model for test plan

Syntax R = CreateResponse(T, Varname)
R = CreateResponse(T, Varname, Model)
R = CreateResponse(T, Varname, LocalModel, GlobalModel)
R = CreateResponse(T, Varname, LocalModel, GlobalModel,

DatumType)

Description This is a method of mbcmodel.testplan.

R = CreateResponse(T, Varname) creates a model of the variable
Varname using the test plan’s one- or two-stage default models. T is the
test plan object, R is the new response object.

R = CreateResponse(T, Varname, Model) creates a one-stage model
of Varname, where T must be a one-stage test plan object.

R = CreateResponse(T, Varname, LocalModel, GlobalModel) or
R = CreateResponse(T, Varname, LocalModel, GlobalModel,
DatumType) creates a two-stage model of Varname. T must be a
two-stage test plan object. DatumType can only be specified if the local
model type permits a datum model. Only the model types “Polynomial
Spline” and “Polynomial with Datum” permit datum models.

Varname is the variable name for the new response.

Model is the One-stage model object (if you leave this field empty, the
default is used).

LocalModel is the Local Model object (if you leave this field empty,
the default is used).

GlobalModel is the Response Feature model object (if you leave this
field empty, the default is used).

DatumType can be 'None' 'Maximum' 'Minimum' or 'Linked'.

Examples To create a response using the default models, enter:

R = CreateResponse(T, 'torque');
TQ_response = CreateResponse(testplan, 'TQ');

2-53

CreateResponse

To create a response and specify the local and global model types, enter:

mdls = T.DefaultModels
LocalModel = CreateModel(mdl{1}, 'Local Polynomial Spline');
GlobalModel = CreateModel(mdl{2}, 'RBF');
R = CreateResponse(T, 'TQ', LocalModel, GlobalModel, 'Maximum')

See Also Responses

2-54

CreateResponseFeature

Purpose Create new response feature for local model

Syntax RF = CreateResponseFeature(RF,RFType)
RF = CreateResponseFeature(RF,RFType,EvaluationPoint)

Description This is a method of mbcmodel.localresponse.

RF = CreateResponseFeature(RF,RFType)

RF = CreateResponseFeature(RF,RFType,EvaluationPoint)

RFType is a description string belonging to the set of alternative
response features for the current local model.

EvaluationPoint is a row vector with an element for each model input
and is used for response features that require an input value to evaluate
the response feature (e.g., function evaluation, derivatives). It is an
error to specify an evaluation point for a response feature type that does
not require an evaluation point.

You should use this method to add response features without refitting
all local and global models.

Examples RF = CreateResponseFeature(RF,'Beta_1')

See Also ResponseFeatures(Local Model)

2-55

CreateTestplan

Purpose Create new test plan

Syntax T = CreateTestplan(P, TestPlanTemplate)
T = CreateTestplan(P, TestPlanTemplate, newtestplanname)
T = CreateTestplan(P, InputsPerLevel)
T = CreateTestplan(P, InputsPerLevel, newtestplanname)
T = CreateTestplan(P, Inputs)
T = CreateTestplan(P, Inputs, newtestplanname)

Description This is a method of the mbcmodel.project object.

You can use this method with a test plan template or input information.

You set templates up in the Model Browser GUI. This setup includes
number of stages, inputs, base models, and designs. If the test plan is
used as part of a previous project it is also possible to save response
models in the test plan. It is not possible to change the number of stages
after creation of the test plan.

After you create a new test plan, you can add data to model, and new
responses. Note that the model input signal names specified in the
template must match the signal names in the data.

Use CreateTestplan in the following ways:

T = CreateTestplan(P, TestPlanTemplate)

T = CreateTestplan(P, TestPlanTemplate, newtestplanname)

P is the project object.

TestPlanTemplate is the full name and path to the test plan template
file created in the Model Browser.

newtestplanname is the optional name for the new test plan object.

T = CreateTestplan(P, InputsPerLevel)

T = CreateTestplan(P, InputsPerLevel, newtestplanname)

InputsPerLevel is a row vector with number of inputs for each stage.

T = CreateTestplan(P, Inputs)

2-56

CreateTestplan

T = CreateTestplan(P, Inputs, newtestplanname)

Inputs is a cell array with input information for each level. The input
information can be specified as a cell array of mbcmodel.modelinput
objects (one for each level), or as a cell array of cell arrays (one for
each level).

Examples To create a test plan using a test plan template, enter:

T = CreateTestplan(P1, 'd:\MBCwork\TQtemplate1', 'newtestplan')

testplan = CreateTestplan(P, 'example_testplan')

To create a test plan using inputs per level, enter:

T = P.CreateTestplan([1,2])

To specify the input information in a cell array of mbcmodel.modelinput
objects, enter:

% Define Inputs for test plan
LocalInputs = mbcmodel.modelinput('Symbol','S',...

'Name','SPARK',...
'Range',[0 50]);

GlobalInputs = mbcmodel.modelinput('Symbol',{'N','L','ICP',...
'ECP'},'Name',{'SPEED','LOAD','INT_ADV','EXH_RET'},...

'Range',{[500 6000],[0.0679 0.9502],[-5 50],[-5 50]});
% create test plan
testplan = CreateTestplan(project, {LocalInputs,...
GlobalInputs});

Or

T = P.CreateTestplan({LocalInputs,GlobalInputs})

To specify the input information in a cell array, enter:

localInputs = {'S',0,50,'','SPARK'};
globalInputs = {'N', 800, 5000, '', 'ENGSPEED'

2-57

CreateTestplan

'L', 0.1, 1, '', 'LOAD'
'EXH', -5, 50, '', 'EXHCAM'
'INT', -5, 50, '', 'INTCAM'};

T = CreateTestplan(P,{localInputs,globalInputs});

See Also AttachData, CreateResponse, Responses, Data, Levels,
InputSignalNames, InputsPerLevel, Inputs, modelinput

2-58

Data

Purpose Array of data objects in project or test plan

Syntax allD = project.Data
allD = testplan.Data

Description This is a property of mbcmodel.project and mbcmodel.testplan.

It returns an array of mbcmodel.data objects. There may be many data
objects in a project, but a test plan can only have one or none.

Examples allD = P.Data;

For a project object P, this example returns an nx1 array of all the data
objects.

allD = T.Data;

For the test plan object T, this example returns a 1x1 array if the test
plan has a data object attached, and 0x1 otherwise.

See Also CreateData, RemoveData, CopyData

2-59

DataFileTypes

Purpose Data file types

Syntax f = mbcmodel.DataFileTypes

Description This is a function to return a list of data file types for mbcmodel.

Examples f = mbcmodel.DataFileTypes

f =

Columns 1 through 4
'Excel file' 'FT/DB data files' 'Delimited Text File'

[1x25 char]
Column 5

'MATLAB Data File'

See Also ImportFromFile, CreateData

2-60

DefaultModels

Purpose Default models for test plan

Syntax testplan.DefaultModels

Description This is a read-only property of mbcmodel.testplan. It returns a cell
array of mbcmodel.model objects (one array for each stage).

Examples To get the default model objects for use in creating a response, enter:

mdls = T.DefaultModels
LocalModel = CreateModel(mdl{1}, 'Local Polynomial Spline');
GlobalModel = CreateModel(mdl{2}, 'RBF');
R = CreateResponse(T, 'TQ', LocalModel, GlobalModel, 'Maximum')

See Also CreateResponse; modelinput

2-61

DefineNumberOfRecordsPerTest

Purpose Define exact number of records per test

Syntax D = DefineNumberOfRecordsPerTest(D, number, testnumAlias)

Description This is a method of mbcmodel.data.

You can use this to set one test per record for one-stage modeling.

number is the input specifying the number of records to include in each
test. Most usually this will be used to specify one test per record.

testnumAlias is an optional string input to define the SignalName that
should be used as the testnumber within MBC. Defaults to the index
of the test.

Note testnumaAias uses the first record in the test as the testnumber,
and testnumbers are unique so any duplicates will be modified.

Examples DefineNumberOfRecordsPerTest(D, 1);
DefineNumberOfRecordsPerTest(D, 10, 'MYLOGNO');

See Also DefineTestGroups

2-62

DefineTestGroups

Purpose Define rule-based test groupings

Syntax D = DefineTestGroups(D, variables, tolerances, testnumAlias,
reorder)

Description This is a method of mbcmodel.data.

You can impose rules to collect records of the current data set (D) into
groups; these groups are referred to as tests. Test groupings are used
to define hierarchical structure in the data for two-stage modeling.

Select a variable or variables to group by and set tolerances. The
tolerance is used to define groups: on reading through the data, when
the value of any specified variable changes by more than the tolerance,
a new group is defined.

variables is the input cell array of strings holding the SignalNames on
which to define the test groupings.

tolerances is the input double array of the same length as variables
holding the required tolerances for the test grouping definition.

testnumAlias is an optional string input to define the SignalName that
should be used as the testnumber within MBC. Defaults to the index
of the test.

Note testnumAlias uses the first record in the test as the testnumber,
and testnumbers are unique so any duplicates will be modified.

reorder is an optional Boolean indicating that the data should be
reordered within the data set. Defaults to false.

See the section on Test Groupings (under Data) in the Model Browser
User’s Guide for more information on these inputs.

Examples DefineTestGroups(D, {'AFR' 'RPM'}, [0.1 30], 'MYLOGNO', false);

2-63

DefineTestGroups

See Also DefineNumberOfRecordsPerTest, NumberOfTests

2-64

Designs

Purpose Designs in test plan

Syntax D = T.Designs

Description Designs is a property of mbcmodel.testplan.

D = T.Designs returns a cell array of designs in the test plan, T, one
element for each level.
When using designs at the command line, designs are treated as an
array. In the Design Editor you can build a design tree, where child
designs inherit characteristics such as constraints from the parent
design. At the command line you can copy and modify designs. By
default, designs are added to the top level of the design tree. To build
tree structures at the command line, you can use the Parent argument
of the AddDesign method to specify the parent design in the design tree.
The tree structure cannot be used at the command line any further,
but you can use the design tree in the Design Editor after you load the
project into the Model Browser.

Examples To get local designs only:

LocalDesigns = T.Designs{1}

To get global designs only:

GlobalDesigns = T.Designs{2}

To get the fifth global design:

D = T.Design {2}(5)

After modifying the design, you must call UpdateDesign, or reassign
to the test plan as follows:

T.Design {2}(5) = D

See Also UpdateDesign

2-65

DetachData

Purpose Detach data from test plan

Syntax T = DetachData(T)

Description This is a method of mbcmodel.testplan.

T is the test plan object. A test plan can only use a single data set, so
you do not need to specify the data object.

Examples DetachData(T1);

See Also AttachData

2-66

DiagnosticStatistics

Purpose Diagnostic statistics for response

Syntax S = DiagnosticStatistics(R, TestNumbers, Stats)

Description This is a method of the local and response model objects,
mbcmodel.localresponse and mbcmodel.response.

The options available are model-specific and are the same options
shown in the drop-down menus of the scatter plots (the top plots) in the
local and global (response feature) model views of the toolbox GUI.

S is a structural array containing Statistics and Names fields.

R is the response model object.

Testnumbers specifies the index into tests for local or hierarchical
models.

Stats is an optional input that defines which diagnostic statistics you
want from the available list. If you don’t specify Stats, you get all
available statistics.

A row is set to NaN if that point is removed.

Examples studentRes = DiagnosticStatistics(local, tn, 'Studentized
residuals');

See Also SummaryStatistics, AlternativeModelStatistics

2-67

Discrepancy

Purpose Discrepancy value

Syntax s = Discrepancy(D)

Description Discrepancy is a method of mbcdoe.design.

s = Discrepancy(D) returns the discrepancy, which is a measure of the
deviation from the average point density. Discrepancy is defined over
the unconstrained design and is only available for space-filling designs.

See Also Maximin; Minimax

2-68

DoubleInputData

Purpose Data being used as input to model

Syntax X = DoubleInputData(R, TestNumber)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response. It returns an array
(X) containing the input data used for fitting the model.

R is the response model object.

TestNumber is an optional input to specify the tests you want.

Examples X = DoubleInputData(R);
x = DoubleInputData(local, tn);

See Also DoubleResponseData

2-69

DoubleResponseData

Purpose Data being used as output to model for fitting

Syntax Y = DoubleResponseData(R, TestNumber)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response. It returns an array
(Y) containing the response data used for fitting the model.

R is the response model object.

TestNumber is an optional input to specify the tests you want.

Examples Y = DoubleResponseData(R);
y = DoubleResponseData(local, tn);

See Also DoubleInputData

2-70

Evaluate

Purpose Evaluate model or design constraint

Syntax Y = Evaluate(M, X)
Y = Evaluate(C, X)

Description This is a method of mbcmodel.model and mbcdoe.designconstraint.

Y = Evaluate(M, X) evaluates the model M at X.

Y = Evaluate(C, X) evaluates the design constraint C at X (negative
results are within the constraint).

X is a (numpoints-by-nfactors) array.

Y is a (numpoints-by-1) array.

See Also PredictedValue, PEV

2-71

Export

Purpose Make command-line or Simulink export model

Syntax ExportedModel = Export(MODEL)
ExportedModel = Export(MODEL, Format)

Description This is a method of these model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse,
mbcmodel.response and mbcmodel.model.

ExportedModel = Export(MODEL) exports the model to MATLAB®
software.

ExportedModel = Export(MODEL, Format) exports the model in the
specified format, which can be 'MATLAB' or 'Simulink'.

Format must be 'MATLAB' or 'Simulink'; an error will be thrown if
this is incorrect.

You can evaluate models exported to the MATLAB workspace in the
same way as when you export them from the Model Browser. You can
save these models as a *.mat file and load them into CAGE.

Model is the object containing the response models from the node you
are exporting from.

Examples M = Export(R2, 'MATLAB');
mbt_model = Export(maxTQ, 'MATLAB');

2-72

ExportToMBCDataStructure

Purpose Export data to MBC data structure

Syntax mbcStruct = ExportToMBCDataStructure (D)

Description This is a method of mbcmodel.data.

It converts the specified data object (D) to the MBC Data Structure
format.

An MBC Data Structure is a structure array that contains the following
fields:

• varNames is a cell array of strings that hold the names of the
variables in the data (1xn or nx1).

• varUnits is a cell array of strings that hold the units associated with
the variables in varNames (1xn or nx1). This array can be empty, in
which case no units are defined.

• data is an array that holds the values of the variables (m x n).

• comment is an optional string holding comment information about
the data.

For more information see the Data Loading Function section (under
Data) in the Model Browser User’s Guide (“Data Loading Application
Programming Interface”). See also mbccheckindataloadingfcn to
specify your own data loading function.

Examples X = ExportToMBCDataStructure(D1);

See Also ImportFromMBCDataStructure

2-73

Filename

Purpose Full path to project file

Syntax Name = P.Filename

Description This is a property of mbcmodel.project.

Examples Name = P.Filename;

2-74

Filters

Purpose Structure array holding user-defined filters

Syntax filt = D.Filters

Description This is a property of mbcmodel.data.

It returns a structure array holding information about the currently
defined filters. The array will be the same length as the number of
currently defined filters, with the following fields for each filter:

• Expression — The string expression as defined in AddFilter or
ModifyFilter

• AppliedOK — Boolean indicating that the filter was successfully
applied

• RemovedRecords— Boolean vector indicating which records the filter
removed. Note that many filters could remove the same record

• Message — String holding information on the success or otherwise
of the filter

Examples filt = D.Filters;

See Also AddFilter, ModifyFilter, RemoveFilter

2-75

FindDesign

Purpose Find design by name

Syntax D = FindDesign(T,Name)
D = FindDesign(T,Level,Name)

Description FindDesign is a method of mbcmodel.testplan.

D = FindDesign(T,Name) finds a design with a matching name from
the test plan T.

Name is a string or a cell array of strings specifying a design name.

Level is the test plan level. By default the level is the outer level (i.e.,
Level 1 for one-stage, Level 2 (global) for two-stage).

D = FindDesign(T,Level,Name) finds a design with a matching name
from the specified level of the test plan.

2-76

FitAlgorithm

Purpose Fit algorithm for model

Syntax F = M.FitAlgorithm

Description This is a property of mbcmodel.model.

An mbcmodel.model.FitAlgorithm object is contained within the
FitAlgorithm property of an mbcmodel.model object. This object
has a Name property, and the following methods: CreateAlgorithm,
getAlternativeNames, IsAlternative, SetupDialog, properties.

Examples To get a fitalgorithm object, F, from a model:

M = mbcmodel.CreateModel('Polynomial', 4);
F = M.FitAlgorithm

F =
Algorithm: Least Squares
Alternatives: 'Minimize PRESS','Forward Selection','Backward
Selection','Prune'
1x1 struct array with no fields.

See Also CreateAlgorithm, getAlternativeNames, IsAlternative,
SetupDialog.

2-77

Fit

Purpose Fit model to new or existing data, and provide summary statistics

Syntax [statistics, model] = Fit(model, X, Y)
[statistics, model] = Fit(model)

Description This is a method of mbcmodel.model.

[statistics, model] = Fit(model, X, Y) This fits the model to the
specified data. After you have called Fit specifying the data to use, then
you can refit the model by calling [statistics, model] = Fit(model)

The statistics returned are defined by the summary statistics
for the response object the model came from. To see these call
SummaryStatistics. These are the statistics that appear in the
Summary Statistics pane of the Model Browser GUI. The statistics
returned depend on the model type.

For a linear model, the statistics are:

’Observations’,’Parameters’,’Box-Cox’,’PRESS RMSE’,’RMSE’.

For a neural network model:

’Observations’,’Parameters’, ’Box-Cox’,’RMSE’, ’R^2’.

Examples statistics = Fit(knot)
statistics =

27.0000 7.0000 1.0000 3.0184 2.6584

See Also SummaryStatistics, UpdateResponse

2-78

FixPoints

Purpose Fix design points

Syntax D = FixPoints(D)
D = FixPoints(D,indices)

Description FixPoints is a method of mbcdoe.design.

D = FixPoints(D) fixes all points in the design.

D = FixPoints(D,indices) fixes all points specified by indices.

See Also PointTypes; RemovePoints

2-79

Generate

Purpose Generate new design points

Syntax D = Generate(D)
D = Generate(D,NumPoints)
D = Generate(D,'Prop1',value1,...)

Description Generate is a method of mbcdoe.design. The Generate method always
generates a new design and replaces the existing points (fixed or free).

D = Generate(D) regenerates the design with the current generator
settings (the current design properties and current number of points). It
is possible that a different design will result (e.g., for Latin Hypercube
Sampling designs).

D = Generate(D,NumPoints) generates the number of points specified
by NumPoints using the current generator settings. You cannot specify
the number of points for all design types (e.g., Central Composite, Box
Behnken) and therefore the NumPoints second input is not supported
for all design types.

D = Generate(D,'Prop1',value1,...) generates a new design with
the generator specified by the generator property value pairs.

You can use the property value pairs to specify design generator
properties (such as the design Type) as part of the Generate command,
e.g.,

C = OptDesign.CreateCandidateSet(OptDesign,...
'Type', 'Grid',...
'NumberOfLevels',[21 21 21]);

OptDesign = Generate(OptDesign,...
'Type','V-optimal',...
'CandidateSet',C,...
'MaxIterations',200,...
'NoImprovement', 50,...
'NumberOfPoints',200);

2-80

Generate

This is equivalent to the following code setting the properties
individually and then assigning the updated generator object to the
design:

P = OptDesign.Generator;
P.Type = `V-optimal';
P.CandidateSet.NumberOfLevels(:)=21;
P.MaxIterations = 200;
P.NumberOfPoints = 200;
P.NoImprovement = 50;
OptDesign.Generator = P;

You see an error if you try to call Generate when the design Style is
User-defined or Experimental data.

For space-filling designs, see also ConstrainedGenerate.

Examples To generate a design with 10 points:

d = Generate(d, 10);

Note The design Type must have a writeable property
'NumberOfPoints' to use this syntax D = Generate(D,NumPoints).
See Type (for designs and generators).

To create and generate a 15 point latin hypercube sampling design:

globalDesign = TP.CreateDesign(2, 'Type',...
'Latin Hypercube Sampling');

globalDesign = Generate(globalDesign, 15)

To regenerate the design and get a different 15 point latin hypercube
sampling design:

globalDesign = Generate(globalDesign);

2-81

Generate

To create and generate a halton design with 50 points:

haltonDesign = CreateDesign(inputs, 'Type',...
'Halton Sequence', 'Name', 'Halton');

haltonDesign = Generate(haltonDesign, 'NumberOfPoints', 50);

To create and generate a halton design with specified scrambling and
other properties:

haltonDesignWithScrambling = haltonDesign.CreateDesign...
('Name', 'Scrambled Halton');
haltonDesignWithScrambling = Generate...
(haltonDesignWithScrambling,
'Scramble', 'RR2', 'PrimeLeap', true);

To create a full factorial design and specify the number of levels when
generating the design:

design = CreateDesign(inputs, 'Type', 'Full Factorial');
design = Generate(design, 'NumberOfLevels', [50 50]);

See Also Augment; CreateDesign; ConstrainedGenerate

2-82

Generator

Purpose Design generation options

Syntax D.Generator
D.Generator = NewGenerator

Description Generator is a property of mbcdoe.design.

D.Generator returns an mbcdoe.generator object.

D.Generator = NewGenerator generates a new design based on the
new design generator. Design generators provide the properties for
all the design types.

The properties you can set depend on the design Type. To view the
properties for generating designs, see Properties (for design
generators).

Use getAlternativeTypes to get a list of alternative generators.

See Also Generate; Properties (for design generators); Type (for
designs and generators); getAlternativeTypes.

2-83

GetAllTerms

Purpose List all model terms

Syntax Terms = M.Properties.GetAllTerms

Description This is a method of mbcmodel.linearmodelproperties.

Terms = M.Properties.GetAllTerms returns a list of all terms in this
model. M is an mbcmodel.linearmodel object.

Terms is a (numterms-by-nfactors) array. The (m,n)th element is the
power of the nth factor in the mth term.

Examples The following example creates a model, and finds which terms are
quadratic in the first input factor (X1):

mdl = mbcmodel.CreateModel('Polynomial', 2)

mdl =

1 + 2*X1 + 8*X2 + 3*X1^2 + 6*X1*X2 + 9*X2^2 + 4*X1^3
+ 5*X1^2*X2 + 7*X1*X2^2 + 10*X2^3

InputData: [0x2 double]
OutputData: [0x1 double]
Status: Not fitted
Linked to Response: <not linked>

>>terms = mdl.Properties.GetAllTerms;
>>x1quadraticterms = find(terms(:,1)==2)

x1quadraticterms =

4
8

See Also GetIncludedTerms

2-84

getAlternativeNames

Purpose List alternative algorithm names

Syntax F.getAlternativeNames
AltList = getAlternativeNames(F)

Description This is a method of mbcmodel.fitalgorithm.

F.getAlternativeNames or AltList = getAlternativeNames(F)
return a cell array of alternative algorithm names. F is a
mbcmodel.fitalgorithm object.

Examples mdl = mbcmodel.CreateModel('Polynomial', 2);
F = mdl.FitAlgorithm;
altAlgs = F.getAlternativeNames

altAlgs =

'Least Squares' 'Minimize PRESS' 'Forward Selection'
'Backward Selection' 'Prune'

See Also CreateAlgorithm, IsAlternative

2-85

getAlternativeTypes

Purpose Alternative model or design types

Syntax list = getAlternativeTypes(Model)
list = getAlternativeTypes(Design)
list = getAlternativeTypes(Design,Style)
list = getAlternativeTypes(DesignGenerator)
list = getAlternativeTypes(DesignGenerator,Style)
list = getAlternativeTypes(CandidateSet)
list = getAlternativeTypes(DesignConstraint)

Description This is a method of mbcmodel.model, and all the design objects:
mbcdoe.design, mbcdoe.generator, mbcdoe.candidateset, and
mbcdoe.designconstraint.

Models

list = getAlternativeTypes(Model) returns a cell array of
alternative model types with the same number of inputs as Model.

Designs

list = getAlternativeTypes(Design) returns a list of design types
which could be used as alternative designs for current design.

list = getAlternativeTypes(Design,Style) returns a list of
design types of the specified style. The design style must be one of
'Space-Filling', 'Classical' or 'Optimal'.

Design Generators

list = getAlternativeTypes(DesignGenerator) returns a list of
design generator types which could be used as alternative designs for
current design generator.

list = getAlternativeTypes(DesignGenerator,Style) returns a
list of design generator types of the specified style. The design generator
style must be one of 'Candidate Set','Space-Filling', 'Classical'
or 'Optimal'.

2-86

getAlternativeTypes

Design Candidate Sets

list = getAlternativeTypes(CandidateSet) is a list of candidate set
types which could be used as alternative candidate sets for the current
candidate set. The candidate set can be obtained from an optimal design
generator or using mbcdoe.design.CreateCandidateSet.

Design Constraints

list = getAlternativeTypes(DesignConstraint) returns a list of
design constraint types.

Examples mdl = mbcmodel.CreateModel('RBF', 2);
altmodels = getAlternativeTypes(mdl)

This produces the output:

altmodels =

Columns 1 through 6

'Polynomial' 'Hybrid Spline' 'RBF' 'Polynomial-RBF' 'Hybrid Splin
'Multiple Linear'

Columns 7 through 8

'Neural Network' 'Transient'

See Also Type (for models), CreateModel

2-87

GetIncludedTerms

Purpose List included model terms

Syntax Terms = M.Properties.GetIncludedTerms

Description This is a method of mbcmodel.linearmodelproperties.

Terms = M.Properties.GetIncludedTerms returns a list of those
terms that will be used to fit the model. M is an mbcmodel.linearmodel
object.

Terms is a (numincludedterms-by-nfactors) array. The (m,n)th element
is the power of the nth factor in the mth included term.

Examples >>mdl = mbcmodel.CreateModel('Polynomial', 2);

>>includedterms = mdl.Properties.GetIncludedTerms;
>>x1quadraticterms = find(includedterms(:,1)==2)

x1quadraticterms =

4
8

See Also GetAllTerms, SetTermStatus

2-88

GetTermLabel

Purpose List labels for model terms

Syntax Labels = M.Properties.GetTermLabel
Labels = M.Properties.GetTermLabel(Terms)
Labels = M.Properties.GetTermLabel(Terms, 'Format',

OutputFormat)

Description This is a method of mbcmodel.linearmodelproperties, which returns
a user-friendly label for one or more specified terms.

Labels = M.Properties.GetTermLabel

Labels = M.Properties.GetTermLabel(Terms)

Labels = M.Properties.GetTermLabel(Terms, 'Format',
OutputFormat)

M is an mbcmodel.linearmodel object.

The specified terms form a row where each value gives the power of that
parameter. OutputFormat

can be 'List' or 'Formula'.

Examples mdl = mbcmodel.CreateModel('Polynomial', 2);
mdl.Properties.GetTermLabel([1 2; 1 0])

produces {'X1*X2^2';'X1'} and

mdl.Properties.GetTermLabel([1 2; 1 0], 'Format', 'Formula')

produces 'X1*X2^2 + X1'.

See Also GetAllTerms, GetIncludedTerms

2-89

GetTermStatus

Purpose List status of some or all model terms

Syntax Status = M.Properties.GetTermStatus
Status = M.Properties.GetTermStatus(Terms)

Description This is a method of mbcmodel.linearmodelproperties.

Status = M.Properties.GetTermStatus returns the status of all of
the terms in this model. Status is a cell array of status strings. M is
an mbcmodel.linearmodel object.

Status = M.Properties.GetTermStatus(Terms) returns the status of
the specified terms in this model.

The stepwise status for each term can be ’Always’, ’Never’ or ’Step’.
The status determines whether you can use the StepwiseRegression
function to throw away terms in order to try to improve the predictive
power of the model.

Examples mdl = mbcmodel.CreateModel('Polynomial', 2);

Get status of X23 term:

status = mdl.Properties.GetTermStatus([0 3])

status =

'Step'

Get status of all terms linear in X1:

status = mdl.Properties.GetTermStatus([1 0; 1 1; 1 2])

status =

'Step'
'Step'
'Step'

2-90

GetTermStatus

See Also SetTermStatus, StepwiseStatus

2-91

ImportFromFile

Purpose Load data from file

Syntax D = ImportFromFile(D, filename, filetype)

Description This is a method of the mbcmodel.data object.

First you must use CreateData, than BeginEdit before you can call
ImportFromFile to bring data into your new data object, D.

Note that you can specify filename and filetype when you call
CreateData as a shortcut for loading data from a file. You still need to
call BeginEdit before you can make changes to the data.

filename is a string holding the full path to the file to load.

filetype is an optional file type to load. See DataFileTypes for the
specification of the allowed file types (and mbccheckindataloadingfcn
to specify your own data loading function).

Filetype defaults to ’auto’ which will attempt to guess the filetype based
on the extension of the file being loaded. i.e. if the file extension is .xls
then MBC will try the Excel File Loader.

Examples ImportFromFile(D, 'D:\MBCData\Raw Data\testdata.xls');

See Also CreateData, DataFileTypes, BeginEdit,
ImportFromMBCDataStructure, RemoveData, Append

2-92

ImportFromMBCDataStructure

Purpose Load data from MBC data structure

Syntax D = ImportFromMBCDataStructure(D, mbcStruct)

Description This is a method of mbcmodel.data.

First you must use CreateData, than BeginEdit before you can bring
data into your new data object.

An MBC Data Structure is a structure array that contains the following
fields:

• varNames is a cell array of strings that hold the names of the
variables in the data (1xn or nx1).

• varUnits is a cell array of strings that hold the units associated with
the variables in varNames (1xn or nx1). This array can be empty, in
which case no units are defined.

• data is an array that holds the values of the variables (m x n).

• comment is an optional string holding comment information about
the data.

For more information see the Data Loading Function section (under
Data) in the Model Browser User’s Guide (“Data Loading Application
Programming Interface”), and see also mbccheckindataloadingfcn to
specify your own data loading function.

Examples ImportFromMBCDataStructure(D, mbcStruct);

See Also ImportFromFile, CreateData, BeginEdit, RemoveData, Append,
ExportToMBCDataStructure

2-93

InputData

Purpose Input data for model

Syntax D = M.InputData

Description This is a property of mbcmodel.model. It returns an array of the input
variable data currently in the model.

Examples D = knot.InputData;

See Also OutputData

2-94

Inputs

Purpose Inputs for test plan, model, design or constraint

Syntax testplan.Inputs
model.Inputs
design.Inputs

Description This is a property of mbcmodel.testplan, mbcmodel.model,
mbcdoe.design and mbcdoe.designconstraint.

For mbcmodel.testplan, this property returns a cell array of
mbcmodel.modelinput objects (one array for each stage). You cannot
change the number of stages after creation of the test plan.

For mbcmodel.model, this property returns an mbcmodel.modelinput
object. It is not editable when attached to a response. You cannot
change number of inputs after creation.

In both cases, verification of valid variable names and symbols occurs
before assigning inputs to model at the command line. Names and
Symbols must be unique.

For mbcdoe.design, D.Inputs = NewInputs updates the inputs.

The number of design inputs cannot be changed. Many designs have
Limits properties in addition to model input ranges. These properties
allow you to restrict the range of the design without changing the model
or losing points via a constraint.

See Also CreateTestplan, modelinput

2-95

InputSetupDialog

Purpose Open Input Setup dialog box to edit inputs

Syntax [NEWMODEL, OK] = InputSetupDialog(OLDMODEL)
[NEWTESTPLAN, OK] = InputSetupDialog(OLDTESTPLAN)

Description This is a method of mbcmodel.model and mbcmodel.testplan.

[NEWMODEL, OK] = InputSetupDialog(OLDMODEL) opens the Input
Setup dialog box, where you can edit the model inputs (names, symbols,
and ranges).

[NEWTESTPLAN, OK] = InputSetupDialog(OLDTESTPLAN) opens the
Input Setup dialog box, where you can edit the test plan inputs (names,
symbols, and ranges).

If you click Cancel to dismiss the dialog box, OK = false and NEWMODEL
= OLDMODEL. If you click OK to close the dialog box, then OK = true and
NEWMODEL is your new chosen model setup. The new model is refitted
when you click OK.

2-96

InputSignalNames

Purpose Names of signals in data that are being modeled

Syntax inputs = A.InputSignalNames

Description This is a property of mbcmodel.testplan and the modeling objects
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response.

A can be a test plan (T) or model (L, R, HR) object.

Examples inputs = T.'InputSignalNames;

InputFactors = thisRF.InputSignalNames';

See Also SignalNames

2-97

InputsPerLevel

Purpose Number of inputs at each level in model

Syntax L = T.InputsPerLevel

Description This is a property of mbcmodel.testplan.

This is a vector of length Levels. Each element defines the number
of inputs at that level. See “Understanding Model Structure” for an
explanation of the levels in a test plan.

Examples L = T.InputsPerLevel
L =

2 4

This answer means the test plan T has 2 local inputs and 4 global inputs.

See Also Levels, Level

2-98

IsAlternative

Purpose Test alternative fit algorithm

Syntax OK = IsAlternative(F1, F2)

Description This is a method of mbcmodel.fitalgorithm.

OK = IsAlternative(F1, F2) tests whether F is an alternative
mbcmodel.fitalgorithm for F1.

See Also CreateAlgorithm, getAlternativeNames

2-99

IsBeingEdited

Purpose Boolean signaling if data or model is being edited

Syntax OK = D.IsBeingEdited

Description This is a property of mbcmodel.data and mbcmodel.model.

This Boolean property indicates that the data or model is currently
being edited.

For data, it also indicates that previously there was a successful call
to BeginEdit and hence that whatever changes have been applied can
be undone by calling RollbackEdit. It does not indicate that a call to
CommitEdit will necessarily succeed. See CommitEdit for an example
of this case.

Examples OK = D.IsBeingEdited;

OK = knot.IsBeingEdited;

See Also BeginEdit, IsEditable, CommitEdit, RollbackEdit

2-100

IsEditable

Purpose Boolean signaling whether data is editable

Syntax OK = D.IsEditable

Description This is a property of mbcmodel.data.

This Boolean property indicates if a particular piece of data is editable.
The following rules apply:

• If the data was created using mbcmodel.CreateData and was not
Attached to a test plan it is editable.

• If the data was created or retrieved from the project and was not
Attached to a test plan it is editable.

• If the data was Attached to a test plan and was subsequently
retrieved from that test plan it is editable.

Examples D = p.Data;
D1 = p.Data;
BeginEdit(D1);
tp = p.Testplan;
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are
mbcmodel.data objects.

At this point D1.IsEditable becomes false because D1 is now Attached
to the test plan and hence can only be modified from the test plan. If
you now enter:

OK = D1.IsEditable

the answer is false.

See Also BeginEdit, IsBeingEdited, CommitEdit, RollbackEdit

2-101

Jacobian

Purpose Calculate Jacobian matrix for model at existing or new X points

Syntax J = Jacobian(model, optional X)

Description This is a method of mbcmodel.model.

This calculates the Jacobian matrix for the model at existing or new X
points. If X is not specified then the existing data is used. The Jacobian
is the regression matrix for linear models and RBF models.

The Jacobian matrix (for linear and RBF models) is the same as the
Regression Matix in the Design Evaluation Tool GUI. These matrices
only include the terms currently selected in the model.

If all terms are included (none removed by Stepwise) then the Jacobian
(for linear and RBF models) is the same as the Full FX matrix found in
the Design Evaluation Tool GUI. The Jacobian matrix only includes the
currently selected model terms.

To determine the condition number, use the MATLAB command
cond(J).

Examples J = Jacobian(knot),

2-102

Level

Purpose Level in test plan of response

Syntax level = R.Level

Description This is a property for all model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response.

R is the response for which you want the level.

The level is usually 0 for hierarchical models, usually 1 for local models,
and usually 2 or 1 for response models. See “Understanding Model
Structure” for an explanation of what Level indicates about a response.

Examples level = R.Level;

See Also Levels

2-103

Levels

Purpose Number of levels in hierarchical model

Syntax levels = T.'Levels

Description This is a property of mbcmodel.testplan.

See “Understanding Model Structure” for an explanation of what
Levels mean.

Examples levels = T.Levels;

See Also Level

2-104

Load

Purpose Load existing project file

Syntax P = Load(P, Filename)

Description This is a method of mbcmodel.project.

P is a project object, and Filename is the full path to the project you
want to load.

Examples P2 = Load(P2, 'D:/MBCwork/TQproject2.mat');

See Also New

2-105

LoadProject

Purpose Load mbcmodel.project

Syntax P = MBCMODEL.LOADPROJECT(FILENAME)

Description P = mbcmodel.LoadProject(FILENAME) loads a mbcmodel.project
from the file FILENAME.

See Also CreateProject, Load

2-106

LocalModel Properties

Purpose Edit local model properties

Syntax Props = localmodel.Properties

Description This is a property of the mbcmodel.localmodel object, which is a
subclass of mbcmodel.model.

See “Understanding Model Structure” for an explanation of the
relationship between the different response types.

Every local model object has an mbcmodel.modelproperties object
(within the Properties property). In this object, each local model type
has specific properties, as described in the following tables.

Local Polynomial Properties

Property Description

Order Polynomial order (vector int:
{[0,Inf],2})

InteractionOrder Maximum order of interaction
terms (int: [0,Inf])

TransformInputRange Transform inputs (Boolean)
ParameterNames List of parameter names

(read-only)
StepwiseStatus Stepwise status

{'Always','Never','Step'}
(cell)

Transform Transform function (char) or
empty ('')

2-107

LocalModel Properties

Local Polynomial Properties (Continued)

Property Description

CovarianceModel Covariance Model (enum:
{'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

Local Hybrid Spline Properties

Property Description

Order Spline and polynomial order
(vector int: {[0,3],2})

SplineVariable Spline variable
SplineInteraction Order of interaction between

spline and polynomial (int:
[0,3])

Knots: Position of knots (vector
real)

ParameterNames: List of
parameter names (read-only)

StepwiseStatus Stepwise status
{'Always','Never','Step'}
(cell)

Transform Transform function (char) or
empty ('')

CovarianceModel Covariance Model (enum:
{'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

2-108

LocalModel Properties

Local Polynomial Spline Properties

Property Description

HighOrder Polynomial order above knot (int:
[2,Inf])

LowOrder Polynomial order below knot (int:
[2,Inf])

Transform Transform function (char) or
empty ('')

CovarianceModel Covariance Model (enum:
{'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

DatumType Datum Type (enum:
{'None','Maximum','Minimum',
'Linked'})

Local Polynomial With Datum Properties

Property Description

Order Polynomial order (int: [0,Inf])
Transform Transform function (char) or

empty ('')
CovarianceModel Covariance Model (enum:

{'None','Power',
'Exponential','Mixed'})

2-109

LocalModel Properties

Local Polynomial With Datum Properties (Continued)

Property Description

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

DatumType Datum Type (enum:
{'None','Maximum','Minimum',
'Linked'})

Local Free Knot Spline Properties

Property Description

Order Spline Order (int: [0,Inf])
NumKnots Number of knots (int:

'Positive')
Transform Transform function (char) or

empty ('')
CovarianceModel Covariance Model (enum:

{'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

Local Truncated Power Series Properties

Property Description

Order Polynomial order (int:
'Positive')

2-110

LocalModel Properties

Local Truncated Power Series Properties (Continued)

Property Description

NumKnots Number of knots (int:
'Positive')

Transform Transform function (char) or
empty ('')

CovarianceModel Covariance Model (enum:
{'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

Local Growth Properties

Property Description

Model Growth model (enum:
{'expgrowth','gomp',
'logistic','logistic4',
'mmf','richards',
'weibul'})

AlternativeModels List of growth models (read-only)
Transform Transform function (char) or

empty ('')
TransformBothSides Transform both sides (Boolean)
CovarianceModel Covariance Model (enum:

{'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

2-111

LocalModel Properties

Local User-Defined Properties

Property Description

Model Name of user-defined model
(enum: {'exponential'})

AlternativeModels List of registered user-defined
models (read-only)

Transform Transform function (char) or
empty ('')

TransformBothSides Transform both sides (Boolean)
CovarianceModel Covariance Model (enum:

{'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

Local Transient Properties

Property Description

Model Name of transient model (enum:
{'fuelPuddle'})

AlternativeModels List of registered transient
models (read-only)

Transform Transform function (char) or
empty ('')

TransformBothSides Transform both sides (Boolean)

2-112

LocalModel Properties

Local Transient Properties (Continued)

Property Description

CovarianceModel Covariance Model (enum:
{'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

Local Multiple Models Properties

Property Description

ModelCandidates List of candidate models (cell)
SelectionStatistic Selection statistic for automatic

model selection (char)
AutomaticInputRanges Use data range as model input

ranges (Boolean)
Transform Transform function (char) or

empty ('')

Local Average Fit Properties

Property Description

Model [1x1 mbcmodel.linearmodel]
Transform Transform function (char) or

empty ('')

Examples To create a local model object, create a model specifying any model Type
that begins with the word “local”, e.g.,

L = mbcmodel.CreateModel('Local Polynomial',2);

2-113

LocalModel Properties

To show properties, at the command line enter:

P = L.Properties

P =
Local Polynomial Properties

Order: [3 3]
InteractionOrder: 3

TransformInputRange: 1
ParameterNames: {10x1 cell}
StepwiseStatus: {10x1 cell}

Transform: ''
CovarianceModel: 'None'

CorrelationModel: 'None'

To set the Order property to a quadratic, enter:

>> P.Order = [2,2]

P =
Local Polynomial Properties

Order: [2 2]
InteractionOrder: 2

TransformInputRange: 1
ParameterNames: {6x1 cell}
StepwiseStatus: {6x1 cell}

Transform: ''
CovarianceModel: 'None'

CorrelationModel: 'None'

To update the local model, the properties object must be reassigned to
the model as follows:

>> L.Properties = P

L =

2-114

LocalModel Properties

1 + 2*X1 + 5*X2 + 3*X1^2 + 4*X1*X2 + 6*X2^2
InputData: [0x2 double]
OutputData: [0x1 double]
Status: Being Edited
Linked to Response: not linked

See Also CreateModel, Type (for models), ResponseFeatures(Local Model)

2-115

LocalResponses

Purpose Array of local responses for response

Syntax local = response.LocalResponses

Description This is a property of the mbcmodel.hierarchicalresponse object.

It returns the local model response objects that belong to the
hierarchical response R.

See “Understanding Model Structure” for an explanation of the
relationship between the different response types.

Examples local = response.LocalResponses;

2-116

MakeHierarchicalResponse

Purpose Build two-stage model from response feature models

Syntax OK = MakeHierarchicalResponse(L,MLE)

Description This method of mbcmodel.localresponse builds a two-stage model
from the response feature models and optionally runs MLE (Maximum
Likelihood Estimation). If there are more response features than
the number of parameters in the local model, the subset of response
features that leads to the best hierarchical response is chosen. The best
hierarchical response is chosen using PRESS RMSE (root mean square
prediction error — see “PRESS statistic”) if all the response feature
models are linear. Otherwise, the best hierarchical response is chosen
using Two-stage RMSE.

This performs a similar function to ChooseAsBest for response
models. You can call MakeHierarchicalResponse directly
or indirectly by calling CreateAlternativeModels for a local
model. If you call CreateAlternativeModels for a local model,
MakeHierarchicalResponse is called automatically.

If the local and response models are not ready to calculate a two-stage
model, an error is generated. This situation can occur if you have
created alternative models and not chosen the best. A sufficient number
of response features models to calculate the two-stage model must be
selected.

L is the local model object.

MLE can be true or false. If true, MLE will be calculated.

Examples OK = MakeHierarchicalResponse(L, true)

See Also ChooseAsBest

2-117

MatchInputs

Purpose Match design constraint inputs

Syntax C = MatchInputs(C,DesignInputs)
C = MatchInputs(C,DesignInputs,mapping)

Description MatchInputs is a method of mbcdoe.designconstraint. Use it to
match inputs for constraints from different sources.

C = MatchInputs(C,DesignInputs)

C = MatchInputs(C,DesignInputs,mapping) matches inputs where
mapping defines the relationship between the inputs in C, and
DesignInputs.

Examples A design constraint does not have required inputs EXH_RET and
INT_ADV. Use MatchInputs to match the constraint inputs to the
design inputs as follows:

c = p.Testplans.BoundaryModel('all')
c =
Star(N-3.5e+003,L-0.54)

originalInputs=c.Inputs
originalInputs =

SPEED (N) [rpm] [500,6000]
LOAD (L) [%] [0.06,0.95]

designInputs = Design.Inputs
designInputs =

SPEED (N) [rpm] [500,6000]
LOAD (L) [%] [0.06,0.95]
EXH_RET (ECP) [DegCrank] [-5,50]
INT_ADV (ICP) [DegCrank] [-5,50]

c2=MatchInputs(c,designInputs,[1 2]);
newInputs=c2.Inputs
newInputs =

SPEED (N) [rpm] [500,6000]

2-118

MatchInputs

LOAD (L) [%] [0.06,0.95]
EXH_RET (ECP) [DegCrank] [-5,50]
INT_ADV (ICP) [DegCrank] [-5,50]

See Also CreateConstraint

2-119

Maximin

Purpose Maximum of minimum of distance between design points

Syntax s = Maximin(D)

Description Maximin is a method of mbcdoe.design.

s = Maximin(D) returns the maximum of the minimum distance
between design points. Maximin is defined over the unconstrained
design and is only available for space-filling design types.

See Also Minimax

2-120

Merge

Purpose Merge designs

Syntax D = Merge(D1,D2,...)

Description Merge is a method of mbcdoe.design.

D = Merge(D1,D2,...) merges the specified designs D1, D2, etc. into a
single design D. The resulting design is a custom design Style.

See Also Style; Augment

2-121

Minimax

Purpose Minimum of maximum distance between design points

Syntax s = Minimax(D)

Description Minimax is a method of mbcdoe.design.

s = Minimax(D) returns the minimum of the maximum distance
between design points. Minimax is defined over the unconstrained
design and is only available for space-filling designs.

See Also Maximin

2-122

Model (for designs)

Purpose Model for design

Syntax D.Model = NewModel

Description Model is a property of mbcdoe.design.

D.Model = NewModel changes the model for the design to NewModel.

The number of inputs cannot be changed. Many designs have Limits
properties in addition to model input ranges.

Setting this property changes optimal designs to custom if the new
model does not support optimal designs.

See Also Inputs

2-123

Model Object

Purpose Model object within response object

Syntax M = response.Model

Description This is a property of all mbcmodel.response objects.

Each response contains a model object (mbcmodel.model) that can be
extracted and manipulated independently of the project.

Extract a model object from any response object (see Response), and
then:

• Fit to new data (Fit).

• Change model type, properties, and fit algorithm settings
(ModelSetup, Type (for models); Properties (for models),
CreateAlgorithm).

• Create a copy of the model with the same inputs (CreateModel).

• Include and exclude terms to improve the model
(StepwiseRegression).

• Examine coefficient values, predicted values, and regression matrices
(ParameterStatistics; PredictedValue; Jacobian).

• If you change the model you need to use UpdateResponse to replace
the new model back into the response object in the project. When you
use UpdateResponse the new model is fitted to the response data.

Examples M = response.Model;

2-124

ModelForTest

Purpose Model for specified test

Syntax mdl = ModelForTest(L,TestNo);

Description This is a method of mbcmodel.localresponse.

mdl = ModelForTest(L,TestNo);

Examples To get the model for test 22, enter:

mdl = ModelForTest(L,22);

2-125

modelinput

Purpose Create modelinput object

Syntax Inputs = mbcmodel.modelinput('PropertyName1',value1,
'PropertyName2',value2,...);

Inputs = mbcmodel.modelinput(NUMINPUTS);
Inputs = mbcmodel.modelinput(INPUTCELLARRAY);

Description This is the constructor for the mbcmodel.modelinput object.

Inputs =
mbcmodel.modelinput('PropertyName1',value1,'PropertyName2',value2,...);

You can set the properties shown in the following table.

Property Description

Range [min,max]
NonlinearTransform {'','1./x','sqrt(x)',

'log10(x)','x.^2',
'log(x)'}

Name String. Signal name from data
set. Inputs for a test plan must
be set before selecting data.

Symbol String. Short name for plot labels
and for use in CAGE.

Units String. Units are overwritten
from the data set units when a
data is selected.

Specify “property, value” pairs as follows:

Inputs = mbcmodel.modelinput('Symbol',{'A','B'},...
'Range',{[0 100],[-20 20]});

Scalar expansion of properties is supported, e.g.,

Inputs = mbcmodel.modelinput('Symbol',{'A','B'},...

2-126

modelinput

'Range',[0 100]);

Inputs = mbcmodel.modelinput(NUMINPUTS);

NUMINPUTS is the number of inputs. Symbols are automatically set to
'X1', 'X2',...,'Xn'. The default range is [-1,1]. For example:

Inputs = mbcmodel.modelinput(2);

Inputs = mbcmodel.modelinput(INPUTCELLARRAY);

INPUTCELLARRAY is a cell array with one row per input and 5 columns
to specify factor names, symbols, ranges and nonlinear transforms as
follows.

The columns of INPUTCELLARRAY must be:

1 Factor symbol (string)

2 Minimum (double)

3 Maximum (double)

4 Transform (string) — empty for none

5 Signal name

These columns are the same as the columns in the Model Factor Setup
dialog box, which can be launched from the test plan in the model
browser.

Examples To create a modelinput object with 2 inputs, enter:

Inputs = mbcmodel.modelinput(2);

To create a modelinput object and define symbols and ranges, enter:

Inputs = mbcmodel.modelinput('Symbol',{'A','B'},...
'Range',{[0 100],[-20 20]});

2-127

modelinput

Inputs = mbcmodel.modelinput('Symbol',{'A','B'},...
'Range',[0 100]);

To create a modelinput object and define inputs with a cell array, enter:

Inputs = mbcmodel.modelinput({...
'N', 800, 5000, '', 'ENGSPEED'
'L', 0.1, 1, '', 'LOAD'

'EXH', -5, 50, '', 'EXHCAM'
'INT', -5, 50, '', 'INTCAM'});

See Also CreateModel, CreateTestplan

2-128

ModelSetup

Purpose Open Model Setup dialog box where you can alter model type

Syntax [newModel, OK] = ModelSetup(oldModel)

Description This is a method of mbcmodel.model objects.

This method opens theModel Setup dialog box where you can choose
new model types and settings. If you click Cancel to dismiss the dialog,
OK = false and newModel = oldModel. If you click OK to close the
dialog box, then OK = true and newModel is your new chosen model
setup. Data and response remain the same as oldModel. The new
model is refitted when you click OK.

Call UpdateResponse to put the new model type back into the response.

Examples [RBF, OK] = ModelSetup(Cubic);

See Also UpdateResponse, Fit

2-129

Modified

Purpose Boolean signaling whether project has been modified

Syntax Name = P.Modified

Description This is a property of mbcmodel.project.

Examples Name = Project.Modified;

2-130

ModifyFilter

Purpose Modify user-defined filter in data set

Syntax D = ModifyFilter(D, Index, expr)

Description This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing
filters.

D is a data object.

Index is the input index to indicate which of the available filters you
wish to modify. Use the property Filters to find the index for each
filter.

expr is the input string holding the expression that defines the filter, as
for AddFilter.

Examples ModifyFilter(D, 3, 'AFR < AFR_CALC + 20');

The effect of this filter is to modify filter number 3 to keep all records
where AFR < AFR_CALC + 20.

ModifyFilter(D, 2, 'MyNewFilterFunction(AFR, RPM, TQ, SPK)');

This modifies filter number 2 to apply the function
MyNewFilterFunction.

See Also AddFilter, RemoveFilter, Filters

2-131

ModifyTestFilter

Purpose Modify user-defined test filter in data set

Syntax D = ModifyTestFilter(D, Index, expr)

Description This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing
filters.

D is a data object.

Index is the input index to indicate which of the available test filters
you wish to modify. Use the property TestFilters to find the index
for each test filter.

expr is the input string holding the expression that defines the test
filter, as for AddTestFilter.

Examples ModifyTestFilter(d1, 2, 'any(n>2000)');

The effect of this is to modify test filter number 2 to include all tests in
which any records have speed (n) greater than 1000.

See Also AddTestFilter, RemoveTestFilter, TestFilters

2-132

ModifyVariable

Purpose Modify user-defined variable in data set

Syntax D = ModifyVariable(D, Index, expr, units)

Description This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing
variables.

D is a data object.

Index is the input index to indicate which of the available variables
you wish to modify. Use the property UserVariables to find the index
for each variable.

expr is the input string holding the expression that defines the variable,
as for AddVariable.

units is an optional input string holding the units of the variable.

Examples ModifyVariable(D, 2, 'MY_NEW_VARIABLE = TQ*AFR/2');

See Also AddVariable, RemoveVariable, UserVariables

2-133

MultipleVIF

Purpose Multiple VIF matrix for linear model parameters

Syntax VIF = MultipleVIF(LINEARMODEL)

Description This is a method of mbcmodel.linearmodel.

VIF = MultipleVIF(LINEARMODEL) calculates the multiple Variance
Inflation Factor (VIF) matrix for the linear model parameters.

Examples VIF = MultipleVIF(knot_model)

See Also ParameterStatistics

2-134

Name

Purpose Name of object

Syntax name = A.Name

Description This is a property of project, data, test plan, input, model, fitalgorithm,
design, and design constraint objects.

A can be any test plan (T), data (D), project (P) model (L, R, HR),
fitalgorithm (F), design (D), or design constraint (C) object.

You can change the names of these objects as follows:

A.Name = newName

For response (output or Y data) signal names, see ResponseSignalName.

For mbcmodel.model.Name, the Name property refers to the model
output name. This property is set to the data signal name when the
response is created or if a model is assigned to a response. This property
cannot be set when a response is attached to the model.

For model parameter names, see Names.

For testplan and response object input names, see InputSignalNames,
and for data objects, see SignalNames.

Examples ResponseFeatureName = thisRF.Name;

See Also Names, InputSignalNames, SignalNames, ResponseSignalName

2-135

Names

Purpose Model parameter names

Syntax N = params.Names

Description This is a property of mbcmodel.modelparameters. It returns the names
of all the parameters in the model. These are read-only.

Examples N = paramsknot.Names
N =
'1'
'N'
'N^2'
'N*L'
'N*A'
'L'
'L^2'
'L*A'
'A'
'A^2';

See Also NumberOfParameters, Values, Name

2-136

New

Purpose Create new project file

Syntax P = New(P)

Description This is a method of mbcmodel.project. Use this to modify a project
object to make a new project from scratch. Note the current project gets
removed from memory when you open a new one.

P is the new project object.

Examples New(P);

See Also Load

2-137

NumberOfInputs

Purpose Number of model or design object inputs

Syntax N = model.NumberOfInputs

Description This is a property of mbcmodel.model, mbcmodel.modelproperties,
and the design objects mbcdoe.design, mbcdoe.generator,
mbcdoe.candidateset, and mbcdoe.designconstraint. It returns the
number of inputs to the model or design object.

Examples N = knot.'NumberOfInputs;

2-138

NumberOfParameters

Purpose Number of included model parameters

Syntax N = knotparams.NumberOfParameters

Description This is a read-only property of mbcmodel.linearmodelparameters, for
linear models only.

The number returned is the number of parameters currently in the
model (you can remove some parameters by using StepwiseRegression).
To see which parameters are currently in the model, use
StepwiseSelection. Only parameters listed as ’in’ are currently
included.

To see the the total possible number of parameters in a linear model,
use SizeOfParameterSet.

Use Names and Values to get the parameter names and values.

Examples N = knotparams.NumberOfParameters;

See Also SizeOfParameterSet, StepwiseSelection, StepwiseRegression,
Names, Values

2-139

NumberOfPoints

Purpose Number of design points

Syntax D.NumberOfPoints

Description NumberOfPoints is a read only property of mbcdoe.design (constrained
number of points).

D.NumberOfPoints is the number of points in the design after applying
the constraints.

You specify the number of points for a design using the generator object.
The NumberOfPoints property of mbcdoe.generator is the number
of points before any constraints are applied. You cannot specify the
number of points for all design types (e.g., it is not allowed for Central
Composite, Box Behnken). To see which design types have an editable
NumberOfPoints property, see the tables in Type (for designs and
generators).

See Also Type (for designs and generators)

2-140

NumberOfRecords

Purpose Total number of records in data object

Syntax numRecords = D.NumberOfRecords

Description This is a property of data objects: mbcmodel.data.

Examples numRecords = Data.NumberOfRecords;

2-141

NumberOfTests

Purpose Total number of tests being used in model

Syntax numtests = A.NumberOfTests

Description This is a property of all model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response, and data objects mbcmodel.data. ’A’ can be any
model or data object.

Examples numTests = TQ_response.NumberOfTests;

See Also DefineTestGroups

2-142

OptimalCriteria

Purpose Optimal design criteria (V, D, A, G)

Syntax s = OptimalCriteria(D)
s = OptimalCriteria(D,Criteria)

Description OptimalCriteria is a method of mbcdoe.design. OptimalCriteria
can only be used for optimal designs.

s = OptimalCriteria(D) returns an array with the values of optimal
criteria [V,D,A,G].

s = OptimalCriteria(D,Criteria) returns the specified optimal
criteria. Criteria must be one of V,D, A, or G.

2-143

OutlierIndices

Purpose Indices of DoubleInputData marked as outliers

Syntax indices = OutlierIndices(R)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

Examples ind = OutlierIndices(R);
bad = OutlierIndices(thisRF);

See Also DoubleInputData

2-144

OutlierIndicesForTest

Purpose Indices marked as outliers for test

Syntax indices = OutlierIndicesForTest(R, TestNumber)

Description This is a method of the local model object, mbcmodel.localresponse.

This shows the current records discarded as outliers.
You can use ’:’ to use all tests.

Examples ind = OutlierIndicesForTest(R, ':');
bad = OutlierIndicesForTest(local, tn);

See Also OutlierIndices

2-145

OutputData

Purpose Output (or response) data for model

Syntax D = M.OutputData

Description This is a property of mbcmodel.model.

It returns an array of the response data currently in the model.

Examples D = knot.OutputData;

See Also InputData

2-146

Owner

Purpose Object from which data was received

Syntax O = D1.Owner

Description This property of mbcmodel.data is:

• Empty if the data was created using mbcmodel.CreateData

• An mbcmodel.project object if the data was extracted from a project

• An mbcmodel.testplan object if the data was extracted from a test
plan

Examples O = D1.Owner;

2-147

Parameters

Purpose Model parameters

Syntax P = model.Parameters

Description This is a property of mbcmodel.model., that contains an object
mbcmodel.modelparameters. This object contains a number of
read-only parameters that describe the model.

All models have these properties:

• SizeOfParameterSet

• Names

• Values

Linear models also have these properties:

• StepwiseStatus

• NumberOfParameters

• StepwiseSelection

Radial Basis Function (RBF) models have all the above properties and
these additional properties:

• Centers

• Widths

Examples P = model.Parameters;

See Also SizeOfParameterSet, Names, Values, StepwiseStatus,
NumberOfParameters, StepwiseSelection, Centers, Widths

2-148

ParameterStatistics

Purpose Calculate parameter statistics for linear model

Syntax values = ParameterStatistics(linearmodel, optional statType)

Description This is a method of mbcmodel.model, for linear models only. This
calculates parameter statistics for the linear model. If you don’t specify
statType, then a structure with all valid types is output. statType
may be a string specifying a particular statistic or a cell array of string
specifying a number of statistics to output. If statType is a string, then
values is an array of doubles. If statType is a cell array of strings,
then values is a cell array of array of doubles.

The valid types are:

’Alias’

’Covariance’

’Correlation’

’VIFsingle’

’VIFmultiple’

’VIFpartial’

’Stepwise’

These types (except Stepwise) appear in the Design Evaluation tool; see
the documentation for this tool for details of these matrices.

The Stepwise field contains the values found in the Stepwise table. In
this array (and in the Stepwise GUI) you can see for each parameter
in the model: the value of the coefficient, the standard error of the
coefficient, the t value and Next PRESS (the value of PRESS if
the status of this term is changed at the next iteration). See the
documentation for the Stepwise table. You can also see these Stepwise
values when you use StepwiseRegression.

Examples values = ParameterStatistics(knot)
values =

2-149

ParameterStatistics

Alias: [7x3 double]
Covariance: [7x7 double]

Correlation: [7x7 double]
VIFsingle: [5x5 double]

VIFmultiple: [7x1 double]
VIFpartial: [5x5 double]

Stepwise: [10x4 double]

values.Stepwise
ans =

1.0e+003 *
0.0190 0.0079 0.0210 NaN
0.0000 0.0000 0.0210 1.9801
0.0000 0.0000 0.0200 0.2984

-0.0000 0.0000 0.0200 0.2768
0.0000 0.0000 0.0200 0.2890

-0.0526 0.0367 0.0210 0.2679
0.0911 0.0279 0.0210 0.3837

-0.0041 0.0024 0.0210 0.2728
-0.0178 0.0095 0.0200 0.2460
0.0001 0.0000 0.0210 0.3246

See Also StepwiseRegression

2-150

PartialVIF

Purpose Partial VIF matrix for linear model parameters

Syntax STATS = PartialVIF(LINEARMODEL)

Description This is a method of mbcmodel.linearmodel.

STATS = PartialVIF(LINEARMODEL) calculates the partial Variance
Inflation Factor (VIF) matrix for the linear model parameters.

Examples VIF = PartialVIF(knot_model)

See Also ParameterStatistics

2-151

PEV

Purpose Predicted error variance of model at specified inputs

Syntax pev = PEV(R, X)

Description This is a method of the hierarchical, local response, response, and
model objects: mbcmodel.hierarchicalresponse, mbcmodel.response,
and mbcmodel.model.

R is the model object, and X is the array of input values where you want
to evaluate the PEV of the model. For a local response, the predicted
value uses the hierarchical model.

Note that for an mbcmodel.model and mbcmodel.response objects only,
the X is optional. That is, the syntax is:

PEV = PEV(model, optional X)

This calculates the Predicated Error Variance at X. If X is not specified,
then X is the existing input values. An array is returned of PEV values
evaluated at each data point.

Examples pev = PEV(R, X);

See Also PEVForTest

2-152

PEVForTest

Purpose Local model predicted error variance for test

Syntax pev = PEVforTest(L, TestNumber, X)

Description This is a method of the local model object, mbcmodel.localresponse.

L is the local model object.

TestNumber is the test for which you want to evaluate the model PEV.

X is the array of inputs where you want to evaluate the PEV of the
model.

Examples pev = PEVforTest(L, TestNumber, X);

See Also PEV

2-153

Points

Purpose Matrix of design points

Syntax designPoints = D.Points

Description Points is a property of mbcdoe.design.

designPoints = D.Points returns the matrix of design points.

You can perform any valid MATLAB operation on this matrix. The
number of columns of the points matrix must be the same as the
number of inputs when setting Points. If you make an assignment to
the Points, the design type changes to Custom. Points are only updated
in the underlying design if they have changed.

See Also FixPoints; PointTypes; RemovePoints; NumberOfPoints

2-154

PointTypes

Purpose Fixed and free point status

Syntax D.PointTypes

Description PointType is a property of mbcdoe.design. Each point has a type of
free, fixed or data.

You can specify fixed points. free is the default. If a point has been
matched to data then it is of type data.

D.PointTypes returns a cell array of PointTypes, one for each design
point. You cannot change a PointType of data to something else as the
data is set by the test plan when matching the design to data.

You can use the method FixPoints to fix all the points in a design.

See Also FixPoints; Points; RemovePoints

2-155

PredictedValue

Purpose Predicted value of model at specified inputs

Syntax y = PredictedValue(R,X)
y = PredictedValue(R)

Description This is a method of the hierarchical, response, local response, and
model objects: mbcmodel.hierarchicalresponse, mbcmodel.response,
mbcmodel.localresponse, and mbcmodel.model.

y = PredictedValue(R,X) evaluates the model at the specified inputs,
where R is the model object, and X is the array of inputs where you want
to evaluate the output of the model.

Note that for an mbcmodel.model, mbcmodel.localresponse and
mbcmodel.response objects, the X is optional. If X is not specified then
the X is the existing input values. That is, the syntax is:

y = PredictedValue(model, optional X)

y = PredictedValue(R) calculates the predicted value at the fit
data. An array is returned of predicted values evaluated at each data
point. For local models, this is equivalent to y= PredictedValue(L,
L.InputData).

Note that you cannot evaluate model output for a local response
or hierarchical response until you have constructed it using
MakeHierarchicalResponse (or CreateAlternativeModels). If you
have created alternative response feature models then a best model
must be selected. If you have made changes such as removing outliers
since choosing a model as best, you may need to choose a new best
model. For a local response, the predicted value uses the hierarchical
model. If no data is specified then the data from all tests is used.

Examples y = PredictedValue(R, X);
modelPred = PredictedValue(thisRF, x);

See Also PredictedValueForTest, ChooseAsBest, PEV, Evaluate

2-156

PredictedValueForTest

Purpose Predicted local model response for test

Syntax y = PredictedValueForTest(L, TestNumber, X)

Description This is a method of the local model object, mbcmodel.localresponse.

L is a local model object.

TestNumber is the test for which you want to evaluate the model.

X is the array of inputs where you want to evaluate the output of the
model.

Examples y = PredictedValueForTest(L, TestNumber, X);

See Also PredictedValue

2-157

Properties (for candidate sets)

Purpose View and edit candidate set properties

Syntax properties(CS)
CS.PropertyName = NewValue

Description “Properties” is a method of mbcdoe.candidateset, which returns
a list of properties.

properties(CS) lists the candidate set properties.

CS.PropertyName = NewValue sets the candidate set property.

The candidate set Type determines which properties you can set.

The following table lists the properties available for each candidate
set type.

Candidate Set Properties (for Optimal Designs)

Candidate Set Type Property Description

NumberOfPoints
(read-only for Grid
and Grid/Lattice)

Number of points (int:
[0,Inf])

All built-in: Grid/
Lattice, Grid, Lattice,
Stratified Lattice,
Sobol, Halton Limits Design Limits

Levels Selection criteria for
best LHS design (cell)

Grid

NumberPerLevel Symmetric design
(vector int: {[-Inf,Inf],
NumberOfInputs})

Lattice Generators Prime number
generators for lattice
(vector int: {[0,Inf],
NumberOfInputs})

2-158

Properties (for candidate sets)

Candidate Set Properties (for Optimal Designs) (Continued)

Candidate Set Type Property Description

Stratified Lattice StratifyLevels Number of levels
for each factors
(vector int: {[0,Inf],
NumberOfInputs})

Scramble Scramble method
(enum:
{‘none’,
’MatousekAffineOwen’}

SkipMode Skip mode
options (enum:
{’None’,’2^k’,’Custom’})

Sobol Sequence

Skip Skip size (int: [0,Inf])
Scramble Scrambling method

for sequence (enum:
{’None’,’RR2’})

PrimeLeap Leap sequence points
using prime number
(boolean)

Halton Sequence

SkipZero Skip zero point
(boolean)

NumberOfPoints User-defined points
(read-only)

User-defined

Points User-defined points

Examples You can use property value pairs to specify candidate set properties as
part of the CreateCandidateSet command, or you can set properties
individually.

To create a candidate set with type grid and specified grid levels:

2-159

Properties (for candidate sets)

CandidateSet = augmentedDesign.CreateCandidateSet...
('Type', 'Grid');
CandidateSet.NumberOfLevels = [21 21 21 21];

See Also CreateCandidateSet

2-160

Properties (for design constraints)

Purpose View and edit design constraint properties

Syntax properties(C)
C.PropertyName = NewValue

Description “Properties” is a method of mbcdoe.designconstraint, which returns
a list of properties.

properties(C) lists the constraint properties.

C.PropertyName = NewValue sets the constraint property.

The constraint Type determines which properties you can set. For
more information, see the following table or Type (for design
constraints).

The following table lists the properties available for each constraint
type.

Constraint Properties

Constraint Type Property Description

A Matrix for linear
constraint (matrix:
[1,NumberOfInputs])

Linear design
constraint:
1*Input1 + 1* Input2
+ 1* Input3 <= 0 b Bound for linear

constraint (double)
CenterPoint Center of

ellipse (vector:
NumberOfInputs)

Ellipsoid design
constraint:
Ellipsoid at
(Input1=0, Input2=0,
Input3=0) Matrix Ellipsoid form

matrix (positive
semi-definite)
(matrix:
[NumberOfInputs,
NumberOfInputs])

2-161

Properties (for design constraints)

Constraint Properties (Continued)

Constraint Type Property Description

Table Table constraint
(vector)

Breakpoints Breakpoints for rows
(vector)

Inequality Relational Operator
(enum: {'<=','>='})

InputFactor Column input
symbol (enum: {
'InputX','InputY'})

1D Table design
constraint:
InputY(InputX) <=
InputY max

TableFactor Table input
symbol (enum:
{'InputX','InputY
'})

Table : Table constraint
(matrix))

RowBreakpoints Breakpoints for rows
(vector)

ColumnBreakpoints Breakpoints for
columns (vector)

Inequality Relational operator
(enum: {'<=','>='})

RowFactor Row input
symbol (enum:
{'InputX','InputY,
'InputZ'})

2D Table design
constraint:
InputZ(InputX,InputY)
<=InputZmax

2-162

Properties (for design constraints)

Constraint Properties (Continued)

Constraint Type Property Description

ColumnFactor Column input
symbol (enum:
{'InputX','InputY,
'InputZ'})

TableFactor Table input
symbol (enum:
{'InputX','InputY',
'InputZ'}

Examples You can use property value pairs to specify constraint properties as
part of the CreateConstraint command, or you can set properties
individually.

For examples, see CreateConstraint.

See Also CreateConstraint

2-163

Properties (for design generators)

Purpose View and edit design generator properties

Syntax properties(Generator)
Generator.PropertyName = NewValue

Description “properties” (lower case p) is a method of mbcdoe.generator, which
returns a list of properties.

properties(Generator) lists the generator properties.

Generator.PropertyName = NewValue sets the generator property.

The design generator object Type determines which properties you can
set. For more information, see Type (for designs and generators).

The settings are applied immediately, you do not need to call generate
on the design object.

The following tables list the properties available for each design type.

Optimal Design Properties (D-, V- and A-Optimal)

Property Description

NumberOfPoints Number of points (int: [0,Inf])
InitialPoints Initial design points (Matrix)
CandidateSet Candidate set

(mbcdoe.candidateset)
AllowReplicates Allow replicate points (boolean)
AugmentMethod Methods to add points (enum:

{'random','optimal'})
Tolerance Tolerance (numeric: 'positive')
MaxIterations Maximum Iterations (int:

'positive')

2-164

Properties (for design generators)

Optimal Design Properties (D-, V- and A-Optimal) (Continued)

Property Description

NumberOfPointsToAlter Number of points to alter per
iteration using the random
augment method (p) (int:
'positive')

NoImprovement Number of iterations with
no improvement using the
random augment method (p) (int:
'positive')

Note Optimal designs have dependencies between NumberOfPoints,
InitialPoints and CandidateSets. When you change
NumberOfPoints, an initial point is drawn from the existing candidate
set. Setting NumberOfPoints updates InitialPoints. Likewise
setting InitialPoints updates NumberOfPoints. When changing the
candidate set a new initial design is drawn from the new candidate set.

Space-Filling Design Properties

Design Type Property Description

NumberOfPoints Number of points (int:
[0,Inf])

All space-filling
design types (Lattice,
Latin Hypercube
Sampling, Stratified
Latin Hypercube,
Sobol, Halton)

Limits Design Limits
(matrix:
[NumberOfInputs,2])

Lattice PrimeGenerators Prime number
generators for lattice
for each input (vector
int: [0,Inf])

2-165

Properties (for design generators)

Space-Filling Design Properties (Continued)

Design Type Property Description

SelectionCriteria Selection criteria
for best LHS
design (enum:
{'discrepancy',
'minimax',
'maximin',
'cdfvariance',
'cdfmaximum'})

Latin Hypercube
Sampling and
Stratified Latin
Hypercube

Symmetry Symmetric design
(boolean)

StratifyLevels Number of levels for
each factors (vector
int:
{[0,Inf],
NumberOfInputs})

Stratified Latin
Hypercube

StratifyValues Stratify levels (cell)

Scramble Scramble method
(enum: {'none',
'MatousekAffineOwen'}

SkipMode Skip mode
options (enum:
{'None','2^k',
'Custom'})

Sobol Sequence

Skip Skip size (int: [0,Inf])

2-166

Properties (for design generators)

Space-Filling Design Properties (Continued)

Design Type Property Description

Scramble Scrambling method
for sequence (enum:
{'None','RR2'})

PrimeLeap Leap sequence points
using prime number
(boolean)

Halton Sequence

SkipZero Skip zero point
(boolean)

Classical Design Properties

Design Type Property Description

NumberOfPoints
(read-only)

Number of points (int:
[0,Inf])

All (Box-Behnken,
Central Composite,
Full Factorial,
Plackett-Burman,
Regular Simplex)

Limits Design limits

All except
Plackett-Burman

NumberOfCenterPointsNumber of center
points (int: [0,Inf])

2-167

Properties (for design generators)

Classical Design Properties (Continued)

Design Type Property Description

StarPoints Star point
position (enum:
{'FaceCenteredCube',
'Spherical',
'Rotatable',
'Custom'})

Inscribe Inscribe points
(boolean)

Central Composite

Alpha Star point location
(vector: {'positive',
NumberOfInputs})

Levels Cell array of levels for
each input (cell)

Full Factorial

NumberOfLevels Number of levels for
each input (vector
int: {'positive',
NumberOfInputs })

Examples You can use property value pairs to specify design generator properties
as part of the Generate and Augment commands. You can also set
properties individually. Some examples:

To create a full factorial design and specify the number of levels when
generating the design:

design = CreateDesign(inputs, 'Type', 'Full Factorial');
design = Generate(design, 'NumberOfLevels', [50 50]);

To create a latin hypercube sampling design:

globalDesign = TP.CreateDesign(2,...
'Type', 'Latin Hypercube Sampling');

2-168

Properties (for design generators)

To create and generate a halton design with 50 points:

haltonDesign = CreateDesign(inputs, 'Type',...
'Halton Sequence', 'Name', 'Halton');

haltonDesign = Generate(haltonDesign, 50);

To explicitly specify the NumberOfPoints property:

haltonDesign = Generate(haltonDesign, 'NumberOfPoints', 50);

To create and generate a halton design with specified scrambling and
other properties:

haltonDesignWithScrambling = haltonDesign.CreateDesign...
('Name', 'Scrambled Halton');
haltonDesignWithScrambling = Generate...
(haltonDesignWithScrambling,...
'Scramble', 'RR2', 'PrimeLeap', true);

To generate an optimal design with specified properties:

OptDesign = Generate(OptDesign,...
'Type','V-optimal',...
'CandidateSet',C,...
'MaxIterations',200,...
'NoImprovement', 50,...
'NumberOfPoints',200);

The previous code is equivalent to setting the properties individually
and then calling Generate as follows:

P = OptDesign.Generator;
P.Type = `V-optimal';
P.CandidateSet.NumberOfLevels(:)=21;
P.MaxIterations = 200;
P.NumberOfPoints = 200;
P.NoImprovement = 50;
OptDesign.Generator = P;

2-169

Properties (for design generators)

To augment a design optimally with 20 points:

OptDesign = Augment(OptDesign,...
'Type','V-optimal',...
'MaxIterations',200,...
'NoImprovement', 50,...
'NumberOfPoints',20);

See Also CreateDesign; Generate; Augment;Properties (for candidate
sets); Properties (for design constraints)

2-170

Properties (for models)

Purpose View and edit model properties

Syntax properties=M.Properties
M.Properties.PropertyName = NewValue
properties(M.Properties)
f=M.Properties.properties

Description “Properties” is a property of mbcmodel.model.

properties=M.Properties returns a mbcmodel.modelproperties
object.

To edit a property, use the syntax M.Properties.PropertyName =
NewValue

“properties” is a method of mbcmodel.fitalgorithm and
mbcmodel.modelproperties which returns a list of properties.

properties(M.Properties) lists the property names, types and
allowed values.

f=M.Properties.properties returns the property names as a cell
array.

The model Type determines which properties you can set. For more
information, see Type (for models).

To get a mbcmodel.modelproperties object from a model:

>> M = mbcmodel.CreateModel('Polynomial', 4);
>> disp(M)
mbcmodel.linearmodel:Polynomial

>>modelproperties=M.Properties

modelproperties =
Polynomial Properties

Order: [3 3 3 3]
InteractionOrder: 3

TransformInputRange: 1

2-171

Properties (for models)

ParameterNames: {35x1 cell}
StepwiseStatus: {35x1 cell}

BoxCox: 1

To create a model and list the properties:

>> M = mbcmodel.CreateModel('RBF',2)

M =

A radial basis function network using a multiquadric kernel
with 0 centers

and a global width of 2.
The regularization parameter, lambda, is 0.0001.
InputData: [0x2 double]
OutputData: [0x1 double]
Status: Not fitted
Linked to Response: <not linked>

>> properties(M.Properties)
RBF Properties

Kernel: RBF kernel (enum: {'multiquadric',...
'recmultiquadric','gaussian','thinplate','logisticrbf',...
'wendland', 'linearrbf','cubicrbf'})

Continuity: Continuity for Wendland kernel...
(0,2,4,6) (int: [0,6])

ParameterNames: List of parameter names (read-only)
StepwiseStatus: Stepwise status {'Always','Never',...

'Step'} (cell)
BoxCox: Box-Cox transform (power) (numeric: [-3,3])

The following syntax returns the properties as a cell array:

>> f=M.Properties.properties

f =

'Kernel'

2-172

Properties (for models)

'Continuity'
'ParameterNames'
'StepwiseStatus'
'BoxCox'

Change a property as follows:

>>M.Properties.Kernel = 'thinplate';

The model changes state to ‘Being Edited’. The settings are not applied
until you call Fit on the model object.

The following sections list the properties available for each model type.

Linear Models — Polynomial Properties

mbcmodel.linearmodel:Polynomial

Order: Polynomial order (vector int: {[0,Inf],NumberOfInputs})

InteractionOrder: Maximum order of interaction terms (int: [0,Inf])

TransformInputRange: Transform inputs (Boolean)

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {’Always’,’Never’,’Step’} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — Hybrid Spline Properties

mbcmodel.linearmodel:Hybrid Spline

Order: Spline and polynomial order (vector int: {[0,3],NumberOfInputs})

SplineVariable: Spline variable

SplineInteraction: Order of interaction between spline and polynomial
(int: [0,3])

Knots: Position of knots (vector real)

ParameterNames: List of parameter names (read-only)

2-173

Properties (for models)

StepwiseStatus: Stepwise status {’Always’,’Never’,’Step’} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — RBF Properties

mbcmodel.linearmodel:RBF

Kernel: RBF kernel (enum:
{’multiquadric’,’recmultiquadric’,’gaussian’,’thinplate’,’logisticrbf’,’wendland’,

’linearrbf’,’cubicrbf’})

Continuity: Continuity for Wendland kernel (0,2,4,6) (int: [0,6])

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {’Always’,’Never’,’Step’} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — Polynomial-RBF Properties

mbcmodel.linearmodel:Polynomial-RBF

Order: Polynomial order (vector int: {[0,Inf],NumberOfInputs})

InteractionOrder: Maximum order of interaction terms (int: [0,Inf])

Kernel: RBF kernel (enum:

{’multiquadric’,’recmultiquadric’,’gaussian’,’thinplate’,’logisticrbf’,’wendland’,

’linearrbf’,’cubicrbf’})

Continuity: Continuity for Wendland kernel (0,2,4,6) (int: [0,6])

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {’Always’,’Never’,’Step’} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — Hybrid Spline-RBF Properties

mbcmodel.linearmodel:Hybrid Spline-RBF

Order: Spline and polynomial order (vector int: {[0,3],NumberOfInputs})

2-174

Properties (for models)

SplineVariable: Spline variable

SplineInteraction: Order of interaction between spline and polynomial
(int: [0,3])

Knots: Position of knots (vector real)

Kernel: RBF kernel (enum:
{’multiquadric’,’recmultiquadric’,’gaussian’,’thinplate’,’logisticrbf’,’wendland’,

’linearrbf’,’cubicrbf’})

Continuity: Continuity for Wendland kernel (0,2,4,6) (int: [0,6])

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {’Always’,’Never’,’Step’} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Nonlinear Models — Free Knot Spline Properties

mbcmodel.model:Free Knot Spline

Order: Spline order (int: [0,3])

NumKnots: Number of knots (int: ’Positive’)

Nonlinear Models — Neural Network Properties

mbcmodel.model:Neural Network

HiddenLayers: Number of hidden layers (int: [1,2])

Neurons: Number of Neurons in each hidden layer (vector int: ’Positive’)

Examples >> properties=M.Properties

properties =
Polynomial Properties

Order: [3 3 3 3]
InteractionOrder: 3

TransformInputRange: 1
ParameterNames: {35x1 cell}
StepwiseStatus: {35x1 cell}

2-175

Properties (for models)

BoxCox: 1

>> M.Properties.Order = [3 2 2 3]

M =

1 + 2*X1 + 10*X4 + 15*X2 + 18*X3 + 3*X1^2 + 6*X1*X4
...+ 8*X1*X2 + 9*X1*X3 +

11*X4^2 + 13*X4*X2 + 14*X4*X3 + 16*X2^2 + 17*X2*X3
...+ 19*X3^2 + 4*X1^3 +

5*X1^2*X4 + 7*X1*X4^2 + 12*X4^3
InputData: [0x4 double]
OutputData: [0x1 double]
Status: Being Edited
Linked to Response: <not linked>

See Also Type (for models), LocalModel Properties

2-176

RecordsPerTest

Purpose Number of records in each test

Syntax numRecords = D.RecordsPerTest

Description This is a property of data objects: mbcmodel.data. It returns an array,
of length NumberOfTests, containing the number of records in each test.

Examples numRecords = D.RecordsPerTest;

2-177

Remove

Purpose Remove project, test plan, or model

Syntax OK = Remove(A)

Description This is a method of all the non-data objects: projects, test plans and
all models.

A can be any project, test plan or model object.

Datum models cannot be removed if they are in use by other models.

Examples OK = Remove(R3);

2-178

RemoveData

Purpose Remove data from project

Syntax P = RemoveData(P, D)
P = RemoveData(P, Index)

Description This is a method of mbcmodel.project.

You can refer to the data object either by name or index.

P is the project object.

D is the data object you want to remove.

Index is the index of the data object you want to remove.

Examples RemoveData(P, D);

See Also CreateData, Data, CopyData

2-179

RemoveDesign

Purpose Remove design from test plan

Syntax RemoveDesign(T,Name)
RemoveDesign(T,Level,Name)
RemoveDesign(T,D)
RemoveDesign(T,Level,D)

Description RemoveDesign is a method of mbcmodel.testplan.

RemoveDesign(T,Name) removes a design with a matching name from
the test plan T.

Name can be a string, or a cell array of strings.

RemoveDesign(T,Level,Name) removes a design with a matching name
from the specified level of the test plan. By default the level is the outer
level (i.e., Level 1 for one-stage, Level 2 (global) for two-stage).

RemoveDesign(T,D) removes D, an array of designs to be deleted. All
designs with matching names are deleted.

RemoveDesign(T,Level,D) removes D from the specified level.

See Also AddDesign; UpdateDesign; FindDesign

2-180

RemoveFilter

Purpose Remove user-defined filter from data set

Syntax D = RemoveFilter(D, Index)

Description This is a method of the mbcmodel.data object.

Index is the input index indicating the filter to remove. Use the
property Filters to find out which filters are present.

Examples RemoveFilter(D1, 3);

See Also AddFilter, Filters

2-181

RemoveOutliers

Purpose Remove outliers in input data by index or rule, and refit models

Syntax R = RemoveOutliers(R, Selection);
R = RemoveOutliers(L, LocalSelection, GlobalSelection)

Description This is a method of the local model object, mbcmodel.localresponse
and the response feature model object mbcmodel.response.

All the response feature models are refitted after the local models are
refitted. Outlier selection is applied to all tests.

For a response model:

• R is a response object.

• Selection specifies either a set of indices or the name of an outlier
selection function, of the following form:

Indices = myMfile(model, data, factorName)

The factors are the same as defined in DiagnosticStatistics.

• data contains the factors as columns of a matrix.

• factorNames is a cell array of the names for each factor.

For a local model:

• LocalSelection is the local outlier selection indices or function.

• GlobalSelection is the global outlier selection indices or function.

Outlier selection functions must conform to this prototype:

Indices = myMfile(model, data, factorName)

The factors are the same as appear in the scatter plot in the Model
Browser.

• data contains the factors as columns of a matrix.

2-182

RemoveOutliers

• factorNames is a cell array of the names for each factor.

Examples outlierind = [1 4 6 7];
RemoveOutliers(thisRF, outlierind);

See Also RemoveOutliersForTest

2-183

RemoveOutliersForTest

Purpose Remove outliers on test by index or rule and refit models

Syntax L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER,
LOCALSELECTION)

L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER,
LOCALSELECTION, doUpdate)

Description This is a method of mbcmodel.localresponse.

L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER,
LOCALSELECTION) removes outliers, refits the local model, and refits the
response feature models.

L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER,
LOCALSELECTION, doUpdate) removes outliers and if doUpdate is true,
refits all response features after the local model is refitted.

TESTNUMBER is the single test number to refit.

LOCALSELECTION can either be a set of indices or a function name.

An outlier selection function must take the following form:

INDICES = MYMFILE(MODEL, DATA, FACTORNAME);

The factors are the same as defined in DiagnosticStatistics.

DATA contains the factors as columns of a matrix, and FACTORNAME is a
cell array of the names for each factor.

Examples For a local response LOCALRESPONSE, to remove first two data points and
do not update response features:

RemoveOutliersForTest(LOCALRESPONSE,1,1:2,false);

To find list of indices of removed data points:

indices = OutliersForTest(LOCALRESPONSE,1);

To restore first data point:

2-184

RemoveOutliersForTest

RestoreDataForTest(LOCALRESPONSE,1,1,false);

To restore all data:

RestoreDataForTest(LOCALRESPONSE,1,':',false);

To update response features:

UpdateResponseFeatures(LOCALRESPONSE);

See Also UpdateResponseFeatures, RestoreDataForTest,
OutlierIndicesForTest, RemoveOutliers

2-185

RemovePoints

Purpose Remove all nonfixed design points

Syntax D = RemovePoints(D)
D = RemovePoints(D,PointType)
D = RemovePoints(D,indices)

Description RemovePoints is a method of mbcdoe.design.

D = RemovePoints(D) removes all nonfixed points from the design.

D = RemovePoints(D,PointType) removes the specified type of points,
where PointType is one of 'free','fixed' or 'data'.

D = RemovePoints(D,indices) removes the points specified by
indices.

Examples To remove all free points:

Design = RemovePoints(Design,'free');

See Also FixPoints

2-186

RemoveTestFilter

Purpose Remove user-defined test filter from data set

Syntax D = RemoveTestFilter(D, Index)

Description This is a method of mbcmodel.data.

D is the data object.

Index is the input index indicating the filter to remove.

Use the property TestFilters to find the index of the test filter you
want to remove.

Examples RemoveTestFilter(D1, 2);

See Also AddTestFilter, TestFilters

2-187

RemoveVariable

Purpose Remove user-defined variable from data set

Syntax D = RemoveVariable(D, Index)

Description This is a method of mbcmodel.data.

D is the data object.

Index is the input index indicating the variable to remove.

Use UserVariables to find the index of the variable you want to remove.

Examples RemoveVariable(D1, 2);

See Also AddVariable, UserVariables

2-188

Response

Purpose Response for model object

Syntax R = model.Response

Description This is a property of mbcmodel.model. It returns the response the
model object came from (e.g. a response object).

If you make changes to the model object (for example by changing the
model type using ModelSetup, or using StepwiseRegression) you must
use UpdateResponse to return the new model object to the response in
the project.

Examples R = model.Response;

See Also UpdateResponse, ModelSetup

2-189

ResponseFeatures(Local Model)

Purpose Set of response features for local model

Syntax RFs = L.ResponseFeatures

Description This is a property of the local model object, mbcmodel.localmodel.

RFs = L.ResponseFeatures returns a mbcmodel.responsefeatures
object. L is the local model.

See “Understanding Model Structure” in the Getting Started
documentation for an explanation of the relationships between local
models, local responses, and other responses.

Available properties and methods are described in the following tables.

Property Description

EvaluationPoints Cell array of evaluation points for the
response feature set (read-only). An
element of EvaluationPoints is empty
if the response feature does not use
the Evaluation point. This property is
set up when the response feature is
created (see the Add method).

Types Cell array of types for response feature
set (read-only). This property is set up
when the response feature is created
(see the Add method).

NumberOfResponseFeatures Number of response features in set
(read-only).

IsFitted The local model has been fitted.

2-190

ResponseFeatures(Local Model)

Method Description

Add Add new response feature to response feature
set

RF = Add(RF,RFtype)

RFtype is a description string belonging to
the set of alternative response features. See
getAlternativeTypes.

RF = Add(RF,RFtype,EvaluationPoint)

EvaluationPoint is a row vector with an
element for each model input and is used
for response features that require an input
value to evaluate the response feature (e.g.,
function evaluation, derivatives). It is an
error to specify an evaluation point for a
response feature type that does not require
an evaluation point.

Remove Remove a response feature from the response
feature set

RF = Remove(RF,index)

Select Select a subset of response features from the
response feature set

RF = Select(RF,indices)

getDefaultSet List of default response features

RF = getDefaultSet(RF)

Returns an mbcmodel.responsefeatures
object with the default set of response features
for the local model.

2-191

ResponseFeatures(Local Model)

Method Description

getAlternativeTypes List of all alternative response feature types
for local model

RFtypes = getAlternativeTypes(RF)

Returns a cell array of response feature type
strings for the local model.

Evaluate Evaluate response features

rfvals = Evaluate(RF);

Returns the values for the response features
for the current local model.

[rfvals,stderr] = Evaluate(RF)

Also returns the standard errors for the
response features for the current local
model. The local model must be fitted before
evaluating response features.

Jacobian Jacobian matrix of response features with
respect to parameters

J = Jacobian(RF)

The local model must be fitted before
calculating the Jacobian matrix.

Covariance Covariance matrix for response features

rfvals = Covariance(RF);

The local model must be fitted before
calculating the covariance matrix.

2-192

ResponseFeatures(Local Model)

Method Description

Correlation Correlation matrix for response features

rfvals = Correlation(RF)

Errors occur if model is not fitted.
ReconstructSets List of subsets of response features which can

be used to reconstruct the local model

RFlist = ReconstructSets(RF)

RFlist is a cell array of
mbcmodel.responsefeatures. Each element
of RFlist can be used to reconstruct the local
model from response feature values.

Examples First, create a local model object:

L = mbcmodel.CreateModel('Local Polynomial',2)

L =

1 + 2*X1 + 8*X2 + 3*X1^2 + 6*X1*X2 + 9*X2^2 + 4*X1^3...
+ 5*X1^2*X2 + 7*X1*X2^2 +

10*X2^3
InputData: [0x2 double]
OutputData: [0x1 double]
Status: Not fitted
Linked to Response: not linked

The properties of the local model object are the same as the
properties of an mbcmodel.model object with the additional property
“ResponseFeatures”. Look at the response features property as follows:

2-193

ResponseFeatures(Local Model)

>> RFs = L.ResponseFeatures

RFs =

Response features for Polynomial
'Beta_1'
'Beta_X1'
'Beta_X1^2'
'Beta_X1^3'
'Beta_X1^2*X2'
'Beta_X1*X2'
'Beta_X1*X2^2'
'Beta_X2'
'Beta_X2^2'
'Beta_X2^3'

% Set up response features
RFtypes = getAlternativeTypes(RFs);
RF = Add(RF, RFtypes{end},-10);

% assign to local model
L.ResponseFeatures = RFs;

2-194

ResponseFeatures(Local Response)

Purpose Array of response features for local response

Syntax RFs = L.ResponseFeatures

Description This is a property of the local model object, mbcmodel.localresponse.

L is the local response.

See “Understanding Model Structure” in the Getting Started
documentation for an explanation of the relationships between local
responses and other responses.

Examples RFs = Local.ResponseFeatures;

2-195

ResponseSignalName

Purpose Name of signal or response feature being modeled

Syntax ysignal = R.ResponseSignalName

Description This is a property of all response objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response.

R can be a hierarchical response, local response or response.

Examples yName = local.ResponseSignalName;

See Also InputSignalNames

2-196

Responses

Purpose Array of available responses for test plan

Syntax R = T.Responses

Description This is a property of mbcmodel.testplan.

T is the test plan object.

See “Understanding Model Structure” for an explanation of the
relationship between test plans and responses.

Examples R = T.Responses;

2-197

RestoreData

Purpose Restore removed outliers

Syntax R = RestoreData(RESPONSE)
R = RestoreData(RESPONSE, OUTLIERINDICES)

Description This is a method of mbcmodel.localresponse and mbcmodel.response.

R = RestoreData(RESPONSE) restores all data previously removed as
outliers.
R = RestoreData(RESPONSE, OUTLIERINDICES) restores all removed
data specified in OutlierIndices. For a local response, the indices
refer to record numbers for all tests.

Examples RemoveOutliers(R, 1:5)
RestoreData(R, 1:2)

See Also RemoveOutliersForTest, RemoveOutliers, OutlierIndices

2-198

RestoreDataForTest

Purpose Restore removed outliers for test

Syntax L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices)
L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices,

doUpdate)

Description This is a method of mbcmodel.localresponse.

L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices)
restores all removed data for TESTNUMBER specified in Indices.

L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices,
doUpdate) restores all specified removed data and if doUpdate is true,
refits all response features. By default, all response feature models will
be updated. If a number of tests are being screened it is more efficient
to set doUpdate to false and call UpdateResponseFeatures when all
the tests have been screened.

Indices must be numbers and must belong to the set of outliers in
OutliersForTest.

Examples For a local response LOCALRESPONSE, to remove first two data points
without updating response features:

RemoveOutliersForTest(LOCALRESPONSE,1,1:2,false);

To find list of indices of removed data points:

indices = OutliersForTest(LOCALRESPONSE,1);

To restore first data point:

RestoreDataForTest(LOCALRESPONSE,1,1,false);

To restore all data:

RestoreDataForTest(LOCALRESPONSE,1,':',false);

To update response features:

2-199

RestoreDataForTest

UpdateResponseFeatures(LOCALRESPONSE);

See Also UpdateResponseFeatures, RemoveOutliersForTest,
OutlierIndicesForTest

2-200

RollbackEdit

Purpose Undo most recent changes to data

Syntax D = RollbackEdit(D)

Description This is a method of mbcmodel.data. Use this if you change your mind
about changes you have made to the data since you called BeginEdit,
such as importing or appending data, applying filters or creating new
user variables.

There are no input arguments. If for your data object D, IsBeingEdited
is true, then RollbackEdit will return it to the same state as it was
when BeginEdit was called. If IsEditable(D) is true then you can still
modify it, if not it will revert to being read-only. See the example below.

Examples D = P.Data;
BeginEdit(D);
AddVariable(D, 'TQ = tq', 'lbft');
AddFilter(D, 'TQ < 200');
DefineTestGroups(D, {'RPM' 'AFR'}, [50 10], 'MyLogNo');
RollbackEdit(D);

This returns the data object D to the same state as when BeginEdit was
called. If the data object IsEditable then the returned object will still
return true for IsBeingEdited, else it will not be editable.

For an example case where IsEditable is false and IsBeingEdited
is true:

D = p.Data;
D1 = p.Data;
BeginEdit(D1);
tp = p.Testplan;
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are
mbcmodel.data objects.

2-201

RollbackEdit

At this point IsEditable for D1 becomes false because it is now
Attached to the test plan and hence can only be modified from the test
plan. However

OK = D1.IsBeingEdited

will still be true at this point, and trying to call CommitEdit will fail.

See Also BeginEdit, CommitEdit, IsBeingEdited

2-202

Save

Purpose Save project

Syntax OK = Save(P)
OK = Save(P, filename)

Description This is a method of mbcmodel.project.

OK = Save(P) saves the project P to the currently selected Filename.
The project Name is used as the Filename if none has previously been
specified. If neither has been specified then you see a warning that your
project has been saved to Untitled.mat.

OK = Save(P, filename) saves the project P with the name specified
by filename.

Examples OK = Save(proj, 'Example.mat');

See Also SaveAs

2-203

SaveAs

Purpose Save project to new file

Syntax OK = SaveAs(P, Name)

Description This is a method of mbcmodel.project.

Examples OK = SaveAs(proj, 'Example.mat');

See Also Save

2-204

Scatter2D

Purpose Plot design points

Syntax Scatter2D(D,Xindex,Yindex)
Scatter2D(D,xindex,yindex,plotArguments)

Description Scatter2D is a method of mbcdoe.design.

Scatter2D(D,Xindex,Yindex) creates a scatter plot of the design
points in design D, where X and Y are the indices or symbols for the
input factors to plot on the X and Y axis.

Scatter2D(D,xindex,yindex,plotArguments) creates a scatter
plot with additional arguments.plotArguments specifies additional
arguments to the MATLAB plot command. The plot command used
in Scatter2D is

plot(D.Points(:,v1),D.Points(:,v2),varargin{:})

The default for varargin is '.'.

Examples Scatter2D(mainDesign, 1, 2);

2-205

SetTermStatus

Purpose Set status of model terms

Syntax M.Properties = M.Properties.SetTermStatus(Terms, Status)

Description This is a method of mbcmodel.linearmodelproperties.

M.Properties = M.Properties.SetTermStatus(Terms, Status) sets
the status of the specified terms in this model. Status must be a cell
array of status strings.

The stepwise status for each term can be Always, Never or Step.
The status determines whether you can use the StepwiseRegression
function to throw away terms in order to try to improve the predictive
power of the model.

M is an mbcmodel.linearmodel object.

Examples M = mbcmodel.CreateModel('Polynomial', 2);
M.Properties = M.Properties.SetTermStatus([1 2; 1 0],
{'Never', 'Always'});

This example sets the status of the X1*X2^2 term to Never and the
X1 term to Always.

See Also GetTermStatus, StepwiseStatus

2-206

SetupDialog

Purpose Open fit algorithm setup dialog box

Syntax [OPT,OK]= SetupDialog(F)

Description This is a method of mbcmodel.fitalgorithm.

[OPT,OK]= SetupDialog(F) opens the fit algorithm setup
dialog box, where you can edit the algorithm parameters. F is a
mbcmodel.fitalgorithm object.

If you click Cancel to dismiss the dialog, OK = false and no changes
are made. If you click OK to close the dialog box, then OK = true and
your new chosen algorithm parameters are set up.

Examples [OPT,OK]= SetupDialog(F)

See Also CreateAlgorithm, getAlternativeNames

2-207

SignalNames

Purpose Names of signals held by data

Syntax names = D.SignalNames

Description This is a property of mbcmodel.data.

This is a cell array of strings that hold the names of the signals within
the data. These names can be used to reference the appropriate signals
in the Value method. The subset of these names that are being
used for modeling may also be found in the test plan and responses
InputSignalNames properties.

Examples names = D.SignalNames;

See Also SignalUnits, InputSignalNames, Value

2-208

SignalUnits

Purpose Names of units in data

Syntax units = D.SignalUnits

Description This is a property of mbcmodel.data.

D is the data object.

It returns a cell array of strings holding the units of the signals.

Examples units = D.SignalUnits;

See Also SignalNames

2-209

SingleVIF

Purpose Single VIF matrix for linear model parameters

Syntax VIF = SingleVIF(LINEARMODEL)

Description This is a method of mbcmodel.linearmodel.

VIF = SingleVIF(LINEARMODEL) calculates the single Variance
Inflation Factor (VIF) matrix for the linear model parameters.

Examples VIF = SingleVIF(knot_model)

See Also ParameterStatistics

2-210

SizeOfParameterSet

Purpose Number of model parameters

Syntax N = params.SizeOfParameterSet

Description This is a property of mbcmodel.linearmodelparameters, for linear
models only. It returns the total possible number of parameters
in the model. Note that not all of these terms are necessarily
currently included in the model, as you may remove some using
StepwiseRegression.

Call NumberOfParameters to see how many terms are currently
included in the model. Call StepwiseSelection to see which terms are
included and excluded.

Use Names and Values to get the parameter names and values.

Examples N = knotparams.SizeOfParameterSet

See Also NumberOfParameters, StepwiseSelection, Names, Values

2-211

StatisticsDialog

Purpose Open summary statistics dialog box

Syntax [mdl,OK]= StatisticsDialog(mdl)

Description This is a method of mbcmodel.model.

[mdl,OK]= StatisticsDialog(mdl) opens the Summary Statistics
dialog box, where you can select the summary statistics you want to use.

If you click Cancel to dismiss the dialog, OK = false and no changes
are made. If you click OK to close the dialog box, then OK = true and
your new chosen summary statistics are set up.

See Also SummaryStatistics

2-212

Status

Purpose Model status: fitted, not fitted or best

Syntax S = model.Status

Description This is a property of mbcmodel.model. It returns a string: ‘Fitted' if
the model is fitted, ‘Not fitted' if the model is not fitted (for example
there is not enough data to fit the model), or ‘Best' if the model has
been selected as best from some alternative models. A model must be
Fitted before it can be selected as Best.

Examples S = knot.Status
S =

`Fitted'

See Also ChooseAsBest

2-213

StepwiseRegression

Purpose Change stepwise selection status for specified terms

Syntax [S, model] = StepwiseRegression(model, optional toggleTerms)

Description This is a method of mbcmodel.model, for linear models only. This
method returns the Stepwise table (as in the Stepwise values for
ParameterStatistics). Leave out toggleTerms to get the current
Stepwise values. You can choose to remove or include parameters using
StepwiseRegression, as long as their StepwiseStatus is Step.

The Stepwise values returned are the same as those found in the table
in the Stepwise GUI. For each parameter, the columns are: the value
of the coefficient, the standard error of the coefficient, the t value and
Next PRESS (the value of PRESS if the status of this term is changed at
the next iteration). Look for the lowest Next PRESS to indicate which
terms to toggle in order to improve the predictive power of the model.

Call StepwiseRegression to toggle between in and out for particular
parameters. toggleTerms can be either an index that specifies which
parameters to toggle, or an array or logical where a true value indicates
that a toggle should occur. The example shown toggles parameter
4, after inspection of the Next PRESS column indicates changing the
status of this term will result in the lowest PRESS. StepwiseRegression
returns the new Stepwise values after toggling a parameter.

After making changes to the model using StepwiseRegression you must
call UpdateResponse.

Use StepwiseStatus (on the child modelparameters object) to see which
parameters have a status of Step; these can be toggled between in and
out using StepwiseRegression (on the parent model object).

Use StepwiseSelection (on the child modelparameters object) to view
which terms are in and out, as shown in the example.

Examples [S, knot] = StepwiseRegression(knot)
S =

1.0e+003 *

2-214

StepwiseRegression

0.1316 0.0606 0.0200 NaN
0.0000 0.0000 0.0200 2.0919
0.0000 0.0000 0.0190 0.2828

-0.0000 0.0000 0.0190 0.2531
0.0000 0.0000 0.0190 0.2680

-0.0551 0.0347 0.0200 0.2566
0.0919 0.0264 0.0200 0.3672

-0.0040 0.0023 0.0200 0.2564
-0.0178 0.0095 0.0200 0.2644
0.0008 0.0004 0.0200 0.2787

[S, knot] = StepwiseRegression(knot, 4)

S =

129.8406 60.1899 19.0000 NaN
0.0048 0.0008 19.0000 662.3830
0.0000 0.0000 18.0000 290.8862

-0.0021 0.0019 19.0000 245.9833
0.0001 0.0002 18.0000 281.4104

-50.4091 34.7401 19.0000 262.8346
94.9675 26.3690 19.0000 400.6572
-4.0887 2.2488 19.0000 262.6588

-17.9412 9.4611 19.0000 276.7535
0.8229 0.3734 19.0000 292.0827

params = knot.Parameters;
N = params.StepwiseSelection

N =
'in'
'in'
'out'
'in'
'out'
'in'

2-215

StepwiseRegression

'in'
'in'
'in'
'in'

>> StepwiseRegression(knot, 4);
params = knot.Parameters;
N = params.StepwiseSelection

N =
'in'
'in'
'out'
'out'
'out'
'in'
'in'
'in'
'in'
'in'

See Also StepwiseSelection, StepwiseStatus, UpdateResponse

2-216

StepwiseSelection

Purpose Model parameters currently included and excluded

Syntax N = paramsknot.StepwiseSelection

Description This is a read-only property of mbcmodel.linearmodelparameters, for
linear models only. It returns a status for each parameter in the model,
in or out, depending on whether the term is included or excluded. You
can choose to remove or include parameters using StepwiseRegression,
as long as their StepwiseStatus is Step. Call StepwiseRegression (on
the parent model object) to toggle between in and out for particular
parameters. You must then call UpdateResponse before calling
StepwiseSelection.

Examples N = paramsknot.StepwiseSelection
N =

'in'
'in'
'out'
'out'
'out'
'in'
'in'
'in'
'in'
'in'

See Also StepwiseRegression, StepwiseStatus, NumberOfParameters,
UpdateResponse

2-217

StepwiseStatus

Purpose Stepwise status of parameters in model

Syntax N = paramsknot.StepwiseStatus

Description This is a method of mbcmodel.linearmodelparameters, for linear
models only. It returns the stepwise status of each parameter in the
model.

The stepwise status for each term can be Always, Never or Step. The
status determines whether you can use the StepwiseRegression
function to throw away terms in order to try to improve the predictive
power of the model.

• Always - Always included in the model.

• Never - Never included in the model.

• Step - You can choose whether to include or exclude this term. Do
this by using StepwiseRegression to toggle between in and out for
particular parameters.

Use StepwiseSelection to find out which terms are currently included
and excluded.

Examples N = paramsknot.StepwiseStatus
N =

'Always'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'

See Also StepwiseRegression, StepwiseSelection

2-218

Style

Purpose Style of design type

Syntax D.Style

Description Style is a read-only property of mbcdoe.design.

D.Style

The style of the design is one of :

• ’User-defined’

• ’Optimal’

• ’Space-filling’

• ’Classical’

• ’Experimental data’

The read-only Style property is derived from the design Type.

See Also Type (for designs and generators)

2-219

SummaryStatistics

Purpose Summary statistics for response

Syntax S = SummaryStatistics(M)
S = SummaryStatistics(M, Names)

Description This is a method of all model objects (mbcmodel.model
and mbcmodel.localmodel) and response objects
(mbcmodel.hierarchicalresponse, mbcmodel.localresponse, and
mbcmodel.response).

These statistics appear in the Summary Statistics pane of the Model
Browser GUI.

S = SummaryStatistics(M) returns summary statistics for the model
or response in a structure array containing Statistics and Names
fields.

S = SummaryStatistics(M, Names) returns summary statistics
specified by Names for the model or response in an array. Names can be a
char array, or a cell array of strings.

Examples S = SummaryStatistics(R2);

See Also DiagnosticStatistics, AlternativeModelStatistics

2-220

SummaryStatisticsForTest

Purpose Statistics for specified test

Syntax SS = SummaryStatisticsForTest(LocalResponse, TestNumber)
SS = SummaryStatisticsForTest(LocalResponse,TestNumber,Names)

Description This is a method of mbcmodel.localresponse.

SS = SummaryStatisticsForTest(LocalResponse, TestNumber)
returns a structure array containing Statistics and Names fields values
for the local model for test TestNumber.
SS =
SummaryStatisticsForTest(LocalResponse,TestNumber,Names)
returns an array of the statistics specified by Names. Names can be a
char array, or a cell array of strings.

Examples SS = SummaryStatisticsForTest(L, 22)

See Also SummaryStatistics

2-221

TestFilters

Purpose Structure array holding user-defined test filters

Syntax testf = data.TestFilters

Description This is a property of mbcmodel.data.

It returns a structure array holding information about the currently
defined test filters for the data object D. The array will be the same
length as the number of currently defined test filters, with the following
fields for each filter:

• Expression— The string expression as defined in AddTestFilter or
ModifyTestFilter.

• AppliedOK — Boolean indicating that the filter was successfully
applied.

• RemovedTests — Boolean vector indicating which tests the filter
removed. Note that many filters could remove the same test.

• Message — String holding information on the success or otherwise
of the filter.

Examples testf = data.TestFilters;

See Also AddTestFilter, ModifyTestFilter, RemoveTestFilter

2-222

TestPlans

Purpose Array of test plan objects in project

Syntax tps = project.TestPlans

Description This is a property of mbcmodel.project.

P is the project object.

Examples tps = project.TestPlans;

2-223

Type (for candidate sets)

Purpose Candidate set type

Syntax C.Type

Description This is a property of mbcdoe.candidateset.

C.Type returns the candidate set type. You can only choose a type when
you create the candidate set, when calling CreateCandidateset.

You can specify the candidate set type during creation by using the
Type property, e.g.,

CandidateSet = augmentedDesign.CreateCandidateSet...
('Type', 'Grid');

Other available properties depend on the candidate set type. To see
the properties you can set, see the table of candidate set properties,
Candidate Set Properties (for Optimal Designs) on page 2-158.

See Also CreateCandidateSet

2-224

Type (for designs and generators)

Purpose Design type

Syntax D.Type
G.Type = NewType

Description This is a read-only property of mbcdoe.design, and a settable property
of mbcdoe.generator.

D.Type returns the design type. You can only choose a type when you
create designs. After design creation, you can only set the Type of a
mbcdoe.generator object, or when calling Generate or Augment.

G.Type = NewType changes the Type, where G is a mbcdoe.generator
object.

The design Type determines which properties you can set. To set
properties, see Properties (for design generators).

Get a list of types which could be used as alternative designs for current
design, using getAlternativeTypes, by entering the following syntax:

Dlist = getAlternativeTypes(D)

where D is an mbcdoe.design object.

The design Type must be one shown in the following table. The
read-only Style property is derived from the Type.

Style Type

D-Optimal
V-Optimal

Optimal

A-Optimal

2-225

Type (for designs and generators)

Style Type

Box-Behnken
Central Composite
Full Factorial
Plackett-Burman

Classical

Regular Simplex
Lattice
Latin Hypercube Sampling
Stratified Latin Hypercube
Sobol Sequence

Space-filling

Halton Sequence
Experimental data Design points replaced by data

points
Custom Any design with a mix of Types

(eg an optimally augmented
space-filling design)

Examples To specify the Type while creating and then generating a design of a
given size:

D = CreateDesign(mdl,'Type','Sobol Sequence')
D = Generate(D,128);

See Also Properties (for design generators); Generate; Augment

2-226

Type (for design constraints)

Purpose Design constraint type

Syntax C.Type

Description This is a property of mbcdoe.constraint.

C.Type returns the design constraint type. You can only choose a type
when you create the constraint, when calling CreateConstraint.

You can specify the constraint type during creation by using the Type
property, e.g.,

c = D.CreateConstraint('Type','Linear')

Other available properties depend on the constraint type. See the table
Constraint Properties on page 2-161.

The constraint Type must be one shown in the following table.

Constraint Type Description

’Linear’ Linear design constraint:
1*Input1 + 1* Input2 + 1* Input3
<= 0

’Ellipsoid’ Ellipsoid design constraint:
Ellipsoid at (Input1=0, Input2=0,
Input3=0)

’1D Table’ 1D Table design constraint:
InputY(InputX) <= InputY max

’2D Table’ 2D Table design constraint:
InputZ(InputX,InputY)
<=InputZmax

See Also CreateConstraint; Constraint Properties on page 2-161

2-227

Type (for models)

Purpose Valid model types

Syntax model.Type
M = mbcmodel.CreateModel(Type, NUMINPUTS)
M2 = CreateModel(M, Type)

Description This is a property of mbcmodel.model.

model.Type returns the model type. This property is set at creation
time. See CreateModel.
The model Type determines which properties you can set. To
set properties, see Properties (for models), and LocalModel
Properties.

Note Spaces and case in model Type are ignored.

The model type must be one shown in the following table.

Type Model Object

Polynomial mbcmodel.linearmodel
Hybrid Spline mbcmodel.linearmodel
RBF mbcmodel.linearmodel
Hybrid RBF mbcmodel.linearmodel
Polynomial-RBF mbcmodel.linearmodel
Hybrid Spline-RBF mbcmodel.linearmodel
Multiple Linear mbcmodel.linearmodel
Free Knot Spline mbcmodel.model
Transient mbcmodel.model
User-Defined mbcmodel.model

2-228

Type (for models)

Type Model Object

Neural Network mbcmodel.model
Local Polynomial Spline mbcmodel.localmodel
Local Polynomial with Datum mbcmodel.localmodel
Local Polynomial mbcmodel.localmodel
Local Hybrid Spline mbcmodel.localmodel
Local Truncated Power Series mbcmodel.localmodel
Local Free Knot Spline mbcmodel.localmodel
Local Multiple Models mbcmodel.localmodel
Local Growth mbcmodel.localmodel
Local User-Defined mbcmodel.localmodel
Local Transient mbcmodel.localmodel
Local Average Fit mbcmodel.localmodel

Get a list of types, using getAlternativeTypes, by entering the
following syntax:

Mlist = getAlternativeTypes(M)

where M is an mbcmodel.model object.

Create an alternative model as follows: M =
mbcmodel.CreateModel(Type, NUMINPUTS) or M2 = CreateModel(M,
Type).

See Also Properties (for models), getAlternativeTypes, CreateModel

2-229

Units

Purpose Model output units

Syntax model.Units
modelinput.Units

Description This is a property of mbcmodel.model and mbcmodel.modelinput
objects.

model.Units or modelinput.Units return the units of the model or
modelinput object.

This property is set to the data signal units when the response is
created or if a model is assigned to a response. This property cannot be
set when a response is attached to the model.

2-230

UpdateDesign

Purpose Update design in test plan

Syntax D = UpdateDesign(T,D)
D = UpdateDesign(T,Level,D)

Description UpdateDesign is a method of mbcmodel.testplan. You must call
UpdateDesign to replace an edited design in the test plan.

D = UpdateDesign(T,D)

D = UpdateDesign(T,Level,D)

D is the array of designs to be updated in the test plan, T.

Level is the test plan level. By default the level is the outer level (i.e.,
Level 1 for One-stage, Level 2 (global) for Two-stage).

The design Name is used to decide what to update. If no name match
is found in the test plan, the design is added.

Design names must be unique so any repeated names will be changed.
The array of designs is an output.

See Also AddDesign; RemoveDesign; FindDesign

2-231

UpdateResponse

Purpose Replace model in response

Syntax UpdateResponse(model)
M = UpdateResponse(M , R); updates the response specified by R

Description This is a method of mbcmodel.model. This takes the model and places it
back into the response it came from. Appropriate action is taken if a
refit is necessary because you have modified either the model, response
data or model data in the interim. For example, if you have changed
the model type, the new model is fitted to the response data. If you
have changed the response data (e.g. removed an outlier), the model is
fitted to the new response data.

Note that when changing the model type or settings (using the
ModelSetup command) the response is not refitted until you
call UpdateResponse. If you have changed the model by using
StepwiseRegression you must call UpdateResponse.

UpdateResponse(M)

updates the model in the response associated with the model.

M = UpdateResponse(M , R);

updates the response specified by R.

Examples UpdateResponse(knot);

See Also ModelSetup

2-232

UpdateResponseFeatures

Purpose Refit response feature models

Syntax UpdateResponseFeatures(L)

Description This is a method of mbcmodel.localresponse.

UpdateResponseFeatures(L) refits all response feature models. You
need to call this if you used RemoveOutliersForTest without specifying
refitting the response features (doUpdate set to false).

Examples For a local response LOCALRESPONSE, to remove first two data points
without updating response features:

RemoveOutliersForTest(LOCALRESPONSE,1,1:2,false);

To update response features:

UpdateResponseFeatures(LOCALRESPONSE);

See Also RemoveOutliersForTest, RestoreDataForTest

2-233

UserVariables

Purpose Structure array holding user-defined variables

Syntax userV = D.UserVariables

Description This is a property of mbcmodel.data.

This returns a structure array holding information about the currently
defined filters. The array will be the same length as the number of
currently defined variables, with fields

• Variable — variable name

- Expression — The string expression as defined in AddVariable
or ModifyVariable

- Units — The string defining the units

- AppliedOK— Boolean indicating that the variable expression was
successfully applied

- Message— String holding information on the success or otherwise
of the variable

Examples myvars = D1.UserVariables

This returns the following information about the user-defined variable
in the example data object D1:

Variable: 'BSFC'
Expression: 'BSFC = FUELFLO./(BTQ.*(ENGSPEED*2*pi/60))'

Units: 'kg/Nm'
AppliedOK: 1

Message: 'Variable successfully added'

Variable is the parsed name of the variable being added. Note that
this might differ from the string used in AddVariable because the
SignalName must be a valid MATLAB variable name, and hence MBC
will parse and modify the input string appropriately.

2-234

UserVariables

See Also AddVariable, ModifyVariable, RemoveVariable

2-235

Value

Purpose Double data from data object

Syntax val = Value(D, varNames, testNumbers)

Description This is a method of mbcmodel.data.

Use this to extract particular data values.

varNames is an optional input that specifies either the name of the
signal that you want to extract (such as 'SPK') or an array of names
({'SPK' 'AFR' 'TQ'}) the indices of the signals ([1 4 5]). Defaults to
’:’ meaning all.

testNumbers is an optional input that specifies which test indices you
want. Defaults to ’:’ meaning all.

val outputs the double values held in the data.

Examples dblValues = Value(D, 'SPK', 1);
dblValues = Value(D, {'SPK' 'AFR'}, ':');
dblValues = Value(D, [1 3 4 5]);
dblValues = Value(D, ':', [1 4 6 8]);

See Also SignalNames

2-236

Values

Purpose Values of model parameters

Syntax vals = paramsknot.Values

Description This is a read-only property of mbcmodel.modelparameters. It returns
the value of each parameter in the model. Use Names to find out the
names of these terms.

Examples vals = paramsknot.Values;

See Also Names

2-237

Widths

Purpose Width data from RBF model

Syntax Width = params.Widths

Description This is a property of mbcmodel.rbfmodelparameters, for Radial Basis
Function (RBF) models only.

Width is usually a single value, but can also be of size 1 by number of
variables in the case of the width per dimension algorithm, or number
of centers by number of variables in the case of tree regression.

Examples Width = params.Widths;

See Also Centers

2-238

	toc
	Function Reference
	Object Creation
	Data Manipulation
	Data Properties
	Data Methods

	Projects
	Project Properties
	Project Methods

	Test Plans
	Testplan Properties
	Testplan Methods

	Designs
	Design Properties
	Design Methods
	Generator Properties
	Generator Methods
	Candidate Set Properties
	Candidate Set Methods
	Design Constraint Properties
	Design Constraint Methods

	Models
	Hierarchical Models
	Hierarchical Response Properties
	Hierarchical Response Methods

	Local Models
	Local Response Properties
	Local Response Methods
	Local Model Properties

	Response Models
	Response Properties
	Response Methods

	Model Objects
	Model Properties
	Linear Model Methods
	Model Methods
	Fit Algorithm Methods

	Model Parameters
	Model Parameters Properties
	Linear Model Properties
	RBF Model Properties

	Model Properties
	Linear Model Properties Methods

	Commands — Alphabetical List

	tables
	Properties of mbcdoe.design
	Local Polynomial Properties
	Local Hybrid Spline Properties
	Local Polynomial Spline Properties
	Local Polynomial With Datum Properties
	Local Free Knot Spline Properties
	Local Truncated Power Series Properties
	Local Growth Properties
	Local User-Defined Properties
	Local Transient Properties
	Local Multiple Models Properties
	Local Average Fit Properties
	Candidate Set Properties (for Optimal Designs)
	Constraint Properties
	Optimal Design Properties (D-, V- and A-Optimal)
	Space-Filling Design Properties
	Classical Design Properties

